

Preliminary Geotechnical Investigation

700 Gordon Street, Whitby Ontario

Ontrio Infrastructure and Lands Corporation

GHD |111 Brunel Road, Suite 200 Mississauga Ontario L4Z 1X3 076896 | Report No 4| September 30 2016

Table of Contents

1.	Intro	duction1						
2.	Meth	od of Inve	stigation	2				
	2.1	Safety P	lanning	2				
	2.2	Borehole Location Clearance						
	2.3	Field Inv	Field Investigation					
	2.4	Geotech	nical Laboratory Testing	5				
3.	Subs	surface Co	nditions	5				
	3.1	Stratigra	phy	5				
	3.2	Ground (Cover	6				
	3.3	Earth Fill	l	6				
	3.4	Native Sa	andy Silt to Sand Till	6				
	3.5	Silty Clay	y to Clayey Silt Till	7				
	3.6	Gravelly	Clay	7				
	3.7	Sand and	d Gravel	7				
	3.8	Bedrock						
	3.9	Geotech	nical Laboratory Test Results	8				
		3.9.1	Gradation Analysis	8				
		3.9.2 3.9.3	Soil Unit Weight Tests	9 9				
	3.10	Groundw	vater Conditions	9				
4.	Engi	neering Dis	scussion and Assessment1	1				
	4.1	General		1				
	4.2	Site Prep	paration and Grading1	1				
	4.3	Foundati	ons 1	2				
		4.3.1	Conventional Spread/Strip Footings1	2				
		4.3.1	Foundations on Engineered Fill1	3				
	4.4	Slab-On-	-Grade 1	4				
		4.4.1 4.4.2	Perimeter Drainage1 Subfloor Drainage1	4 5				
	4.5	Seismic	Site Classification	5				
	4.6	Depth of	Frost Penetration	6				
	4.7	Lateral E	arth Pressures1	6				
5.	Pave	ement Desi	ign 1	17				
	5.1	Subgrad	~ e Preparation1	17				
			· ·					

	5.2	Recomme	ended Pavement Structure	17		
	5.3	Drainage.		18		
6.	Cons	truction Co	nsideration	18		
	6.1	6.1 Site Servicing				
	6.2	Excavatio	n and Temporary Shoring	19		
	6.3	Temporary Ground Water Control				
	6.4	Backfilling				
	6.5	Construction Monitoring				
	6.6	Soil Corro	sivity Potential	22		
		6.6.1 6.6.2	Corrosivity on Construction Concrete Corrosivity on Grey Ductile Cast Iron	23 23		
7.	Limita	ations of the	e Investigation	25		

Figure Index

Figure 1	Site Location Map
Figure 2	Site Plan and Investigative Locations

Appendix Index

- Appendix A Borehole Logs
- Appendix B Geotechnical Laboratory Test Results
- Appendix C Soil Corrosivity Test Results

1. Introduction

GHD Limited (GHD) has been retained by Ontario Infrastructure and Lands Corporation (Infrastructure Ontario/IO) to undertake a preliminary geotechnical investigation at the property located on 700 Gordon Street in Whitby, Ontario, hereinafter referred to as the "Site". The Site Location Map is provided on Figure 1.

The Site has an approximate area of 3.5 hectares and is currently occupied by a number of existing buildings, driveways, parking areas, and landscaped areas that are part of a complex operated by the Ontario Shores Centre for Mental Health Sciences.

The geotechnical investigation was required to develop a preliminary understanding of opportunities and constraints on the subject property in preparation for future development. The information gathered in this investigation will be used to assess the types of development and will be used as a supporting document for revitalization of the area.

- The purpose of this preliminary geotechnical investigation was to understand the subsurface soil and groundwater conditions at the study area, and to provide professional opinions, comments and recommendations to Infrastructure Ontario for the design and construction of structures. The scope of work of the conducted geotechnical investigation included completion of the following: Advancing eleven (11) geotechnical boreholes to 4.4 to 13.9 m below ground surface (mBGS) including one borehole to 30 mBGS or auger refusal on bedrock to delineate the subsurface ground stratigraphy and geotechnical properties and to define soil, bedrock and groundwater conditions,
- Installation of shallow monitoring wells in six (6) of the drilled boreholes and three (3) additional deeper monitoring wells were installed adjacent to three shallow wells for hydrogeological monitoring purposes.
- Carrying out laboratory soil testing and analysis of select samples for soil classification and to evaluate ground geotechnical properties as well as to assess soil corrosivity on construction materials,
- Preparation of a geotechnical engineering report providing professional opinions, comments and recommendations regarding the design and construction of building foundations, floor slab, site servicing and pavements, along with
- Assessment of the anticipated construction conditions pertaining to excavation, temporary shoring, backfilling, and groundwater control during construction.

The work of the geotechnical investigation was carried out in accordance to GHD work plan and cost estimate dated May 19, 2016 and subsequent IO comments provided on September 14, 2016.

This report summarizes the activities and findings of the performed geotechnical investigation and contains the findings of the investigation, together with our recommendations and comments. These recommendations and comments are based on factual information and are intended only for use of Infrastructure Ontario design engineers and their affiliates.

The anticipated construction conditions pertaining to excavation, temporary groundwater control, and backfilling are discussed also in this report, but only with regard to how these might influence the design. Construction methods described in this report must not be considered as specifications or recommendations to the contractors or as the only suitable methods. The data and their interpretation presented in this report may not be sufficient to assess all of the factors that may have an effect upon the construction. Prospective contractors, therefore, should evaluate the factual information, obtain additional subsurface data as they might deem necessary and select their construction methods, sequencing and equipment based on their own experience on similar projects.

On-going liaison with GHD during the final design and construction phase of the project is recommended to ensure that the comments and recommendations provided in this report are applicable and/or correctly interpreted and implemented.

The attached 'Limitations of the Investigation' is an integral part of this report.

2. Method of Investigation

The field investigation protocols and methodologies are presented below:

2.1 Safety Planning

Upon project initiation, a Site-specific Health and Safety Plan (HASP) was prepared for implementation during the field investigation program. The HASP presents the visually observed Site conditions to identify potential physical hazards to field personnel. Required personal protective equipment was also listed in the HASP. It is mandatory for all GHD personnel involved in the field program, to read the HASP and have a copy of the HASP available at the Site during the investigative work. Health and Safety requirements in the HASP were implemented during the field investigation program.

2.2 Borehole Location Clearance

Prior to initiating the subsurface investigation activities, all applicable utility companies (gas, hydro, network cables, water, waste water, etc.) were contacted through Ontario One-Call, to demarcate the location of their respective underground utilities and to ensure that the service lines will not be damaged during the investigative works.

In addition, GHD carried out a precondition survey to document the current condition of the ground surface at and in the vicinity of the boreholes and also along the proposed travel pathway of the drilling equipment in order to establish a baseline condition prior to the fieldwork. The precondition survey consisted of a visual, walk-through inspection of the Site and documentation using photographs. The re-inspection of the Site conditions and all required remedial work was carried out after all fieldwork was complete.

2.3 Field Investigation

The fieldwork program associated with the present geotechnical investigation was conducted at the Site during the period of July 18 and August 12, 2016 and consisted of advancing a total of fourteen (14) exploratory geotechnical boreholes. The boreholes were advanced to depths ranging between 4.4 and 13.9 mBGS. It is noted that BH08-16 was intended to be advanced to a depth of 30 mBGS, however, due to auger refusal the borehole was terminated at 13.9 mBGS. In addition, a monitoring well consisting of a 50 mm O.D. diameter was installed in six (6) of the drilled boreholes at depths ranging between 4.3 and 4.9 m below ground surface (mBGS). The boreholes and monitoring wells have been denoted as MW01-16, BH02-16, MW03-16, BH04-16, MW05-16, BH06-16 to BH09-16, MW10-16, BH11-16, MW12-16, BH13-16 and MW14-16. In three (3) locations, deeper monitoring wells were installed in boreholes advanced adjacent to the shallow monitoring wells. These wells are identified by the designation of D (Deep) or S (Shallow) in the well identification number. The locations of the drilled boreholes and monitoring wells are shown on Figure 2.

The drilling work was carried out utilizing a track mounted power auger drilling rig (Diedrich D-53) supplied and operated by Walker Drilling Limited (Walker), the GHD specialist drilling subcontractor, under the full-time supervision of a GHD experienced technical representative. The borehole locations were established by GHD and all drilling operations and fieldwork were completed in the presence of a GHD representative. The boreholes were advanced using 228 mm O.D. hollow stem augers and soil samples were collected every 0.75 metres to 4 mBGS, and every 1.5 meters interval thereafter to the termination depth of drilling.

The GHD supervisor logged the borings and examined the samples as they were obtained. All sampling was conducted using a 50 mm outside diameter split spoon sampler in accordance with the specifications of the Standard Penetration Test Method (ASTM D1586). In addition, at each borehole location the compactness condition¹ or consistency of the subsurface soil layers were assessed using the Standard Penetration Test (SPT) method, by recording the number of blows ('N' values/penetration numbers) required to drive a conventional split barrel soil sampler, 0.3 m into the material.

The recovered samples were sealed in clean, airtight containers and transferred to the GHD Mississauga laboratory, where they were reviewed by a senior geotechnical engineer to confirm their classification and assignment of select samples for geotechnical laboratory testing. The detailed description of the individual soil units and groundwater conditions and ground stratigraphy as encountered at the borehole locations are recorded on the accompanying borehole logs presented in Appendix A.

Groundwater level observations and measurements were made in the boreholes as drilling proceeded and upon completion of drilling. In order to measure the more stabilized ground water table in the area, a 50 mm O.D. diameter monitoring well (schedule 40 PVC screen and riser pipe) were installed in MW1-16, MW3-16, MW5-16, MW10-16, MW12-16 and MW14-16. Three (3) of the monitoring wells (MW5-16, MW10-16, and MW12-16) consisted of two wells installed at different horizons for hydrogeological monitoring purposes to further investigate whether at these locations

¹ as indicated in the Canadian Foundation Engineering Manual (CFEM)

artesian conditions are present at depth. These monitoring wells have been identified by the addition of letters D or S in the well identification. The screen length used for the monitoring wells was 3 metres and silica sand pack was placed at the tip of the monitoring well and extended at least 0.6 m above the screen. The wells were backfilled using sand around and beyond the screen interval and bentonite to the ground surface. Details of monitoring well construction are presented on the attached borehole logs (Appendix A).

All of the drilled boreholes that did not contain a monitoring well were backfilled using cement additive to prevent settlement at the borehole locations. The boreholes were grouted from bottom upward upon completion and sealed with a cement-bentonite grout in accordance with Ontario Regulation 903. A cement-bentonite-water composition of 1:1:4 was used to prepare the boreholes backfilling grout. Excess soil cuttings were collected and temporarily stored in drums and preserved on Site for off-Site disposal at a later date.

The UTM coordinates of the ground surface at each borehole or monitoring well location (northing, easting and elevation) were surveyed by GHD experienced survey team, using UTM NAD 83 coordinate system with geodetic elevations and a Town of Whitby geodetic benchmark². It is noted that the study area was essentially flat with a maximum grade difference of approximately 2.2 m at the drilled borehole locations. The table below presents the UTM coordinates of the borehole and monitoring well locations.

BH ID.	Depth (m)	Northing	Easting	Geodetic Elevation (m)
MW01-16	12.25	4857313.49	665416.10	81.62
BH02-16	12.33	4857325.54	665455.38	80.16
MW03-16	4.35	4857335.63	665495.84	79.24
BH04-16	12.33	4857269.36	665426.34	81.85
MW05D-16	12.23	4857281.61	665468.67	81.00
MW05S-16	4.97	4857281.78	665470.31	81.00
BH06-16	12.28	4857298.38	665512.58	79.31
BH07-16	12.75	4857228.46	665525.14	80.29
BH08-16	13.14	4857219.75	665479.43	81.00
BH09-16	12.63	4857212.28	665435.88	81.94
MW10D-16	12.72	4857157.24	665451.18	81.98
MW10S-16	7.62	4857155.17	665448.72	82.00
BH11-16	12.33	4857167.92	665491.59	81.61
MW12D-16	12.63	4857177.72	665533.66	80.73

Table 2.3 Drilled Boreholes Depth and Ground Surface Coordinates

² Benchmark (Township of Whitby, Station 0011967U010, Orthometric Elevation 77.221 m, located on Brock Street Bridge over small creek,1.0 km south of C.N.RY., 2.9 km south of Post Office, Tablet in top of concrete curb on west side of Road, 61 cm from south end of Bridge, 61 cm from east edge of curb, 30 cm above road level) was used as a reference point for surveying purposes.

BH ID.	Depth (m)	Northing	Easting	Geodetic Elevation (m)
MW12S-16	4.85	4857177.03	665535.31	80.66
BH13-16	11.87	4857114.18	665462.75	82.27
MW14-16	12.46	4857126.61	665503.17	81.57

Table 2.3 Drilled Boreholes Depth and Ground Surface Coordinates

It is noted that the elevation of the ground surface at the borehole locations are considered accurate to within 25 mm.

2.4 Geotechnical Laboratory Testing

Prior to the geotechnical laboratory testing program, the soil samples were subjected to tactile examination by an experienced GHD geotechnical engineer who confirmed the field descriptions and selected representative samples for detailed testing.

Geotechnical laboratory testing has been carried out on select soil samples. This testing included moisture content determination on all recovered samples, eighteen (18) grain size analysis on select representative samples, and twelve (12) Atterberg limits tests on the same samples selected for grain size. Soil classifications had been conducted in accordance to the Unified Soil Classification System. Additionally, six (6) unit weight tests have been conducted on select, relatively intact samples. The soil testing program conformed to the latest edition of the following standards:

- ASTM D6913 —Standard Test Method for Particle Size Distribution (Gradation) of Soils using Sieve Analysis
- ASTM D 422 Standard Test Method for Particle Size Analysis of SoilsII (Hydrometer Analysis)
- ASTM D4318 Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soilsll ASTM D 7263—Unit Weight of Soil Specimens
- ASTM D2487 —Standard Practice for Classification of Soils for engineering purposes (Unified Soil Classification System)

The results of water content tests on the extracted soil samples are reported in the log of the drilled boreholes presented in Appendix A. The results of the grain size analysis and Atterberg Limits tests as well as soil unit weight tests are discussed in more detail in Section 3.0 and the associated gradation curves and plasticity charts are presented in Appendix B. The Unified Soil Classification System (USCS) was used for soil description and classification.

3. Subsurface Conditions

3.1 Stratigraphy

The subsurface conditions encountered at the Site during the current geotechnical investigation are summarized below and are also presented on the accompanying borehole logs (Appendix A). It is noted that the subsurface conditions are confirmed at the borehole locations only, and may vary at other locations. The general stratigraphy at the Site consists of topsoil and surficial fill or disturbed

native soil underlain by native silty clay to sand and gravel deposits. A brief description of each soil stratum is presented below.

3.2 Ground Cover

All of the drilled boreholes and monitoring wells were located in a grass covered area and encountered a surficial layer of topsoil, with the exception of MW05-16 and BH11-16, where clayey silt and sandy silt earth fill soils were encountered. The topsoil generally consisted of soils similar to the underlying fill soil, and comprised of silty clay to silty sand, with rootlets and organic matter. The thickness of the topsoil layer ranged between 75 and 300 mm at the borehole locations. Classification of this material was based solely on visual observation, tactile examination and texture evidence. It is noted that the thickness of topsoil can vary between and beyond the borehole locations.

3.3 Earth Fill

Earth fill was encountered below the surficial topsoil (where present) or at the ground surface in all of the drilled boreholes. The fill materials extended to depths varying from approximately 0.8 to 2.3 mBGS. The fill composition is in general heterogeneous, consisting of silty clay to silty sand. Rootles, topsoil inclusions and cobble fragments were occasionally observed within the fill samples.

SPT 'N' values within the earth fill layer varied between 6 and 32 blows per 0.3 m of penetration indicating a variable degree of compaction for the fill materials, ranging from firm to hard consistencies or compact relative densities. The moisture content of the fill samples extracted from the borings varied between 4 and 33 percent by weight, indicating a damp to very moist condition. The higher moisture content values within the fill samples are likely due to the presence of elevated clay content or presence of organics within the extracted samples.

It was noted that at some test-locations, due to the sandy nature of the fill and underlying native deposit, the extent of fill had been estimated based on the soil samples extracted. The thickness and quality of the fill can vary between and beyond the borehole locations.

3.4 Native Sandy Silt to Sand Till

The predominant type of native deposits all boreholes advanced at the Site except BH06-16 consisted of sandy silt to sand glacial till with trace to some clay and gravel that, extended to the termination depth of the boreholes. The deposits are generally brown to grey in colour.

SPT 'N' values within the native granular stratum varied between 19 blows per 0.3 m of penetration and greater than 50 blows per 75 mm of penetration(refusal), indicating a compact to very dense, condition of the deposit. The relatively lower penetration numbers were related to the near-the-surface soils and soil relative density generally improved with depth.

Water content measurements obtained from extracted samples varied generally between 2 and 19 percent by weight, indicating damp to moist and wet condition. The relatively higher moisture content values are generally associated with the higher percentage of fine-grained soil inclusions and localized wet conditions.

3.5 Silty Clay to Clayey Silt Till

Silty Clay to Clayey Silt glacial till soils with some sand to sandy and trace to some gravel were encountered in BH02-16, BH04-14, BH05D-16, BH09-16, BH10-16, BH11-16, MW12D-16, and BH13-16 below the Sandy Silt to Sand Till layer at a depth of 2.3 to 9.6 mBGS, and extended to a depth of 8.2 to 13.0 mBGS embedded within the coarse-grained silty sand to sand soil, and locally above or below the granular deposits. The Silty Clay to Clayey Silt glacial till was also encountered immediately beneath the earth fill layer in BH06-16 and extended to a depth of 12.2 mBGS.

All of the Penetration numbers (SPT 'N' values) within the native fine-grained clayey soils were in excess of 30 blows per 150 mm of penetration (refusal), indicating a hard consistency of the deposits.

Water content measurements obtained from the extracted samples of the clayey soils varied generally between 3 and 21 percent by weight, indicating damp to moist condition. The relatively higher moisture content values are generally associated with the higher percentage of fine-grained soil inclusions and localized wet conditions.

3.6 Gravelly Clay

A deposit of gravelly clay with some sand and trace to some silt was encountered in MW10D-16, underlying the sandy silt till at 11.4 mBGS and extended to the termination depth of the monitoring well (12.7 m). A SPT 'N' value of 83 was recorded within the deposit indicating its hard consistency.

The borehole terminated within the clayey deposit due to refusal to augering and sampling. This deposit could be a transition between the overburden and the underlying bedrock.

3.7 Sand and Gravel

Sand and gravel with some silt and trace clay was encountered in BH13-16 at 6.4 mBGS and extended to the underlying bedrock at 10.1 m. The SPT'N' values recorded within the deposit was in excess of 50 blows for 125 mm advance of the probe, indicating a very dense relative density of the material.

A gradation analysis conducted on a select sample of the soil unit indicated that it contained 40 percent gravel, 43 percent sand, 14 percent silt and 3 percent clay content.

The measured moisture content of two obtained samples of the above noted soil unit was 7 percent related to its moist/wet condition.

3.8 Bedrock

Shale bedrock was encountered/inferred in all of the investigated locations (with the exception of MW05S-16, BH07-16, MW10D-16, MW10S-16, BH11-16, MW12D-16 and MW12S-16) at depths ranging between 4.3 and 13.1 (Elevations 67.0 to 75.0 m).

Rock coring was conducted in BH08-16 for a short length (0.7 m) to confirm the presence of bedrock. The bedrock in the area consists of bluish and grey shale with interbeds of limestone, siltstone and dolostone of Georgian Bay formation. Based on our experiences, the upper portions

of the bedrock is commonly weathered for a depth of 600 to 1000 mm and within this weathered zone hard limestone layers or lenses are common.

3.9 Geotechnical Laboratory Test Results

Prior to the geotechnical laboratory testing, the soil samples have been subject to tactile examination by an experienced GHD geotechnical engineer who confirmed the field descriptions and selected representative samples for detailed testing.

3.9.1 Gradation Analysis

Grain size analyses consisting of sieve and hydrometer testing were carried out on eighteen (18) select samples extracted from the drilled boreholes, at depths varying between 1.7 and 12.6 mBGS. The results of these tests are summarized in the following table and the grain size distribution test results are presented in Appendix B.

Borehole Identification Number	Sample Number	Depth m	Gravel %	Sand %	Silt %	Clay * %	Fines Silt & Clay %
MW01-16	SS3	1.7-2.0	2	52	37	9	46
BH02-16	SS6	4.7-5.0	0	2	56	42	98
MW03-16	SS3	1.7-2.0	2	51	35	12	47
MW03-16	SS5B	3.2-3.5	3	88	NA	NA	9
BH04-16	SS4	2.4-2.7	11	38	43	8	51
BH05-16	SS5	3.2-3.5	1	55	34	10	44
BH06-16	SS5	3.2-3.5	3	44	41	12	53
BH07-16	SS5A	3.2-3.3	8	59	27	6	33
BH07-16	SS5B	3.3-3.4	1	59	33	7	40
BH08-16	SS6	4.7-5.0	14	57	23	6	29
BH09-16	SS3	1.7-2.0	7	50	30	13	43
BH09-16	SS6	4.7-5.0	3	46	38	13	51
BH09-16	SS9	9.3-9.6	0	47	42	11	53
BH11-16	SS5	3.2-3.5	4	53	31	12	43
MW12D-16	SS5	12.3-12.6	2	24	55	19	74
BH13-16	SS5	3.0-3.2	10	44	35	11	46
BH13-16	SS6	4.6-4.8	2	53	32	13	45
BH13-16	SS8	7.0-7.3	40	43	14	3	17

Table 3.9.1 Results of Grain Size Analysis

* Soil particles <2µ

The results of the grain size analysis tests are also reported on the respective borehole logs.

3.9.2 Atterberg Limits Tests

Atterberg limits tests have been conducted on twelve (12) select samples extracted from the drilled boreholes. These samples were selected at depths ranging between 1.7 and 12.6 mBGS. The plasticity charts related to the conducted Atterberg Limits Tests are provided in Appendix B. A summary of the obtained results is presented in the following table.

Borehole No.	Sample No.	Sample Depth	Liquid Limit	Plastic Limit	Plasticity Index	Water Content	Soil Classification
BH02-16	SS6	4.7-5.0	31	15	16	15	Silty Clay
MW03-16	SS3	1.7-2.0	17	11	6	6	Silty Sand
BH04-16	SS4	2.4-2.7	Non-Plast	Non-Plastic (np)			Silty Sand/ Sandy Silt
BH05-16	SS5	3.2-3.5	16	10	6	5	Silty Sand
BH06-16	SS5	3.2-3.5	17	11	6	8	Silty Clay/ Clayey Silt
BH07-16	SS5A	3.2-3.3	Non-Plast	tic (np)		6	Silty Sand
BH07-16	SS5B	3.3-3.4	Non-Plast	tic (np)			Silty Sand
BH08-16	SS6	4.7-5.0	Non-Plast	tic (np		2	Silty Sand
BH09-16	SS3	1.7-2.0	18	11	7	6	Silty Sand
BH09-16	SS6	4.7-5.0	13	10	3	15	Clayey Silt/ Silt
BH11-16	SS5	3.2-3.5	16	10	6	NA	Silty Sand
MW12D-16	SS5	12.3-12.6	19	11	8	14	Silty Clay
BH13-16	SS6	4.6-4.8	16	10	6	6	Silty Sand

Table 3.9	2 Results	of Atterberg	Limits Tests	on Fine-Grained S	oils
	. L RCSuits	of Attenderg			0115

NA: Not Available

3.9.3 Soil Unit Weight Tests

Six (6) soil unit weight tests have been conducted on select relatively undisturbed soil samples the materials extracted from Borehole BH06-16 at depths ranging between 0.9 and 11.1 mBGS. The tabulated results are provided in Appendix B.

It was noted that the bulk unit weight of the tested soil samples ranged between 21.7 and 26.1 kN/m^3 , with an average value of 23.4 KN/m^3 .

3.10 Groundwater Conditions

As part of the investigation, groundwater observations were made in each of the boreholes as they were drilled and upon completion of drilling. The observed conditions are reflected in the logs of the drilled boreholes presented in Appendix A.

In order to obtain groundwater levels in a more stabilized condition, monitoring wells have been installed at the location of MW01-16, MW03-16, MW05-16, MW10-16, MW12-16 and MW14-16. In addition, three (3) of the monitoring wells (MW05-16, MW10-16, and MW12-16) consisted of

consisted of wells installed at two different elevations in two separate boreholes drilled adjacent to each other to determine whether artesian condition at depth is present at these locations. These monitoring wells have been identified by the addition of letters D (Deep) or S (Shallow) in the well identification. The boreholes for installation of the monitoring wells were advanced using hollow stem augers to the final depth. The screened sections of the monitoring wells were installed below the assessed local ground water table to investigate fluctuations of the near-the-surface water table.

The wells were constructed with 50 mm (O.D.) Schedule 40 PVC screen and casing. The well screens were 1.5 m or 3.0 m long and pre-slotted (No. 10 slot). The screen was surrounded with sand that was placed around the screen and was extended generally to 0.6 m above the top of the screen. The monitoring wells were sealed with bentonite that extended from the top of the filter sand.

The GHD field personnel returned to the site on August 16, 2016 several days following installation to measure water levels in the installed piezometers/monitoring wells. The ground water level measurements are presented on the attached borehole logs (Appendix A) and a summary of the information on the installed monitoring wells and ground water level measurements is provided in the following table.

Borehole No.	Installation Date	Ground Surface Elevatio	Depth of the Well (m)	Water Level Readings mBGS ¹ / mAMSL ²		
	2016	n (m)	- ()	Upon Completion	August 16, 2016	
MW01-16	July 18	81.62	4.70/76.92	4.65/76.97	3.62/78.00	
MW03-16	July 18	79.24	4.3574.69	4.11/75.13	3.16/76.08	
MW05D-16	August 4	81.00	12.20/68.80	Dry	2.64/78.36	
MW05S-16	August 4	81.00	4.57/76.43	Dry	3.45/77.55	
MW10D-16	August 12	81.98	11.59/70.39	Dry	4.12/77.86	
MW10S-16	August 12	81.98	5.69/76.29	Dry	5.84/76.14	
MW12D-16	July 25	80.73	10.21/70.52	Dry	3.25/77.48	
MW12S-16	July 22	80.66	4.63/76.03	4.11/76.55	3.38/77.28	
MW14-16	August 12	81.57	10.67/70.90	4.52/77.05	3.90/77.67	

Table 3.6 Summary of Groundwater Levels

Notes:

1- Metres Below Ground Surface

2- Metres Above Mean Sea Level

The measured depth of the groundwater levels within these wells ranged between 2.6 and 5.84 mBGS (Elev. 76.1 and 78.4 m) indicating relatively shallow groundwater table at this Site.

A slight artesian condition (water head difference) of 0.8 m and 1.7 m was recorded in the deep and shallow monitoring wells installed in MW05-16 and MW10-16 respectively. The water level in MW12D-16 and MW12S16 were similar (no grade difference), indicating no artesian condition at this location.

It is recommended that a more thorough investigation of the groundwater table be carried out during the detail design phase to study the fluctuations of the groundwater level at the Site.

It is noted that the ground water table in the area could be subject to seasonal fluctuation and could rise in response to major weather events.

4. Engineering Discussion and Assessment

4.1 General

The Site has an approximate area of 3.5 hectares and is currently occupied by a number of existing buildings, driveways, parking areas, and landscaped areas that are part of a complex operated by the Ontario Shores Centre for Mental Health Sciences.

The conducted geotechnical investigation was required to develop a preliminary understanding of opportunities and constraints on the subject property in preparation for future development. The information gathered in this investigation will be used to assess the types of development and will be used as a supporting document for revitalization of the area.

The native undisturbed soils at this site are in general competent to support conventional spread/strip footings to support the structural loads. Based on the findings obtained at the borehole locations, the native subgrade soils below any surficial fill consist in general of compact to very dense sandy soils or hard clayey deposits. Conventional footings or relatively short augered piers placed on the undisturbed native soils may be used for supporting the structural footings and loads.

Additional investigations may be required during the detailed design phase of the project when the layout and ultimate configuration and loading of the proposed structure/s are confirmed.

The following sections provide our engineering comments and recommendations on the above topics as well as other geotechnical related design and construction issues.

4.2 Site Preparation and Grading

Based on the subsurface conditions encountered in the drilled boreholes, the Site is generally underlain by fill materials extending to depths ranging between 0.8 to 2.3 mBGS, overlying native coarse-grained sandy/gravelly materials or fine-grained till soils. The existing fill materials across the Site were found to be slightly variable in relative density or consistency.

A floor slab of a building can be constructed on the existing fill provided the upper portion of the layer is removed as described in Section 4.4. In proposed pavement areas, it is recommended to remove only the surficial vegetative cover containing rootlets, organic matters and any earth fill materials found to contain significant amounts of organics prior to site grading activities

The subgrade soils exposed after the removal of the surficial topsoil and fill materials as described above should be visually inspected, compacted, and proof rolled using large axially loaded vibratory equipment. Any soft, organic, or unacceptable areas should be subexcavated, removed as directed by the Geotechnical Engineer and replaced with suitable clean earth fill materials placed in thin layers (150 mm thick or less) and compacted to a minimum of 98 percent Standard Proctor Maximum Dry Density (SPMDD).

The earth fill materials found to contain significant amounts of deleterious materials or organics should be removed from the Site and should not be used as backfill. Also, care will be required during excavation to separate any fill materials that appear to contain significant organics from the clean earth fill.

The earth fill at the Site that is free of topsoil and deleterious material, and the native soils encountered at the Site, are generally suitable for reuse as backfill to raise site grades where required or can be used to backfill against foundation walls or as trench backfill during installation of buried services, provided the materials are free of deleterious and organic material, and is within the optimum moisture content. The sandy soils in general appear to exhibit moisture contents which are considered to be near or slightly below the laboratory optimum for compactable soil. Some of the samples obtained below the anticipated groundwater table appear to exhibit moisture contents which are soils may be required during construction. If such native soils are to be reused as a structural fill, it should be anticipated that reworking of the soils through slight drying the wet soil will be necessary to facilitate compaction. Control of moisture content during placement and compaction will be essential for maintaining adequate compaction.

4.3 Foundations

The common practice for the SLS design of most structure and building foundations is to limit the foundation total and differential settlements to the above noted values. However, other serviceability criteria for the buildings may be determined by the structural engineer considering tolerable settlement values that would not restrict the use or operation of the proposed structure.

4.3.1 Conventional Spread/Strip Footings

Conventional spread or strip footings must extend below any existing fill and be placed on the undisturbed compact to very dense native granular soil or hard clayey soils. Footings can be designed for a factored geotechnical resistance at Ultimate Limit State (ULS) of 450 kPa, and a geotechnical reaction at Serviceability Limit State (SLS) of 300 kPa. The minimum depths at which these bearing pressures are available at the borehole locations are shown in the table below, subject to a detailed design geotechnical investigation and on Site verification during construction.

Borehole Number	Minimum Founding Depth Below Existing Grade/Elevation (m) Factored geotechnical resistance at ULS = 450 kPa; Geotechnical reaction at SLS = 300 kPa
MW01-16	0.8/80.8
BH02-16	0.8/79.4
MW03-16	1.5/77.7
BH04-16	1.5/80.3
MW05D-16	0.8/80.2
MW05S-16	0.8/80.2
BH06-16	0.8/78.5
BH07-16	0.8/79.5

Table 4.3.1 Depths of Footings on Native Soils (mBGS)

Borehole Number	Minimum Founding Depth Below Existing Grade/Elevation (m) Factored geotechnical resistance at ULS = 450 kPa; Geotechnical reaction at SLS = 300 kPa
BH08-16	0.8/80.2
BH09-16	1.5/80.4
MW10D-16	1.5/80.5
MW10S-16	1.5/80.5
BH11-16	0.8/80.8
MW12D-16	0.8/80.0
MW12S-16	0.8/80.0
BH13-16	2.3/80.0
MW14-16	1.5/80.0

Table 4.3.1 Depths of Footings on Native Soils (mBGS)

Higher bearing capacities could be available at the same or deeper depths if required, pending further investigation.

The total and differential settlements are expected not to exceed 25 mm and 19 mm respectively for footings designed and constructed in accordance with the above noted criteria. These values are usually within tolerable limits for most types of structures.

Adjacent footings at different elevations should be stepped at a slope not steeper than ten (10) Horizontal to seven (7) Vertical. As well, footings close to underground services should be set back from services. It is also recommended that the lowest footing be constructed first in order to avoid undermining the footings at higher elevations.

The building perimeter foundations and those foundations within unheated areas should be protected from frost effects by at least 1.2 m of earth cover according to OPSD 3090.101 or equivalent insulation.

The minimum footing dimensions and other footing requirements should be designed in accordance to the latest edition of the Ontario Building Code (OBC) and recommendations provided in the latest edition of Canadian Foundation Engineering Manual (CFEM).

It is recommended that once the details of the loadings and foundation sizes are determined, adetailed design geotechnical investigation is conducted and a refined settlement analysis is carried out for verification.

4.3.1 Foundations on Engineered Fill

To avoid stepping down the footings in the areas where underlying the footings the competent subgrade surface is present at different elevations, or where footing/Site grade raise requires, consideration can be given to placing conventional footings on engineered fill. In such condition, a maximum net allowable bearing pressure of up to 150 kPa for SLS design and 225 kPa for a factored ULS design can be used for foundations placed on engineered fill.

Prior to placing engineered fill it will be necessary to remove all surficial fill in the footing areas to the top of the native soil stratum and exposed subgrade surfaces should be inspected, approved by

the Geotechnical Engineer, and proof rolled to confirm the presence of competent native soils. The engineered fill should be placed in 150 mm thick layers and compacted to 100 percent SPMDD.

4.4 Slab-On-Grade

The slab-on-grade of a building can be constructed using a standard slab-on-grade technique, provided that the prepared subgrade consists of well compacted fill or native soils. Depending on the final site grading levels selected for a slab, the subgrade for the slab construction will likely consist of existing earth fill, engineered fill materials placed as part of the site grading operations, or native soils.

Due to the relative density and nature of the existing fill across the Site it is possible to leave some of the existing fill in place beneath a floor slab. It is recommended that the existing fill beneath the slab-on-grade or permanent slab be partially subexcavated to remove half of the existing fill layer thickness, or up to 0.9 m below grade, whichever is less, and the exposed surface should be inspected and heavily proof rolled. Any area observed to be soft/loose should be subexcavated further and replaced with engineered fill in accordance with Section 4.2. The grade should be then raised with an acceptable engineered fill placed in shallow lifts (not more than 200 mm thickness) and carefully compacted to not less than 98% of the material's Standard Proctor Maximum Dry Density (SPMDD). Alternatively, consideration can be given to using a structural slab that is supported by the building foundation. A qualified geotechnical engineer should review the condition of the subgrade beneath the slab-on-grade.

A minimum of 200 mm thick layer of 20 mm crushed stone should be placed between the prepared subgrade and the floor slab to act as moisture barrier. For the structural design of the concrete slabon-grade, a combined modulus of subgrade/granular base reaction coefficient (k) of 60 MPa/m can be used.

If one level or two levels of basement are considered for a building, due to the relatively elevated groundwater level in the area and the depth of installation of the basement floor slab, and if the design is in favor of a drained basement mechanism, installation of perimeter drainage and underfloor basement drainage system will be required. The following presents the geotechnical comments and recommendations on these installations.

4.4.1 Perimeter Drainage

A permanent perimeter wall drainage system will need to be installed at the foundation level for building/s basement walls to collect and direct groundwater. The perimeter drainage system should consist of Terrafix Terradrain[™] 200, Mirafi Miradrain[™] 5000, and/or similar products. As an alternative, a 100 mm diameter flexible weeping tile could be placed adjacent to the base of the footing around the exterior perimeter of the basement foundation wall. The pipe should be fully enveloped in 19 mm clear stone (OPSS 1010), which in turn is fully wrapped in a non-woven geotextile such as Terrafix 270R or equal. The perimeter drainage system should be provided with a collector pipe at the base of the foundation wall that drains to a sump pit and discharges to a positive frost-free outlet. The discharge pipe should not be connected to other discharge piping, such as roof leads or other sumps.

4.4.2 Subfloor Drainage

Due to the potential for high water table at the Site, asubfloor drainage system should be installed beneath the floor slab. The subfloor drainage system should consist of a 300 mm layer of 19 mm clear stone, separated from the underlying soils by filter fabric (Terrafix 270R, or equivalent) with 100 mm diameter perforated pipes placed a maximum of 5 m apart discharging to appropriate sump structures for a positive outlet. As an alternative, the subfloor drains could consist of 100 mm diameter perforated flexible weepers installed within trenches cut 300 mm below the top of subgrade and infilled with 19 mm clear stone (OPSS 1010). The clear stone should be fully enveloped with a non-woven geotextile such as Terrafix 270R or equal. Subdrains should discharge to a positive frost-free outlet such as a sump. The discharge pipe should not be connected to other discharge piping, such as roof leads or other sumps.

Underneath the slab, the subfloor drainage blanket (capillary break blanket) could be made up of a 200 mm thick base course layer consisting of 19 mm size clear stone (OPSS Granular 'A'), placed to improve the support for the floor slab. The basement floor base course should be nominally compacted with vibratory equipment to a uniform high density. Below the clear stone, a non-woven geotextile filter fabric having a F.O.S. of 80 microns should be placed as a separator between the subgrade and the clear stone. This filter fabric should be overlapped with the filter fabric used as a separator for the perimeter drainage system.

The roof runoff should be collected and directed through solid pipes away from the building and to a positive outlet and the surfaces surrounding the structure should be graded to direct water away from the Building. The discharge pipe should not be connected to other discharge piping, such as roof leads or other sumps.

The floor slabs of the below grade structures such as basements, if below the groundwater level, should be designed for hydraulic uplift and provided with water proofing measures. Additional recommendations for subfloor drainage and waterproofing measures can be provided in the detailed design geotechnical investigation, following a review of proposed building/s or structure/s plans.

Where the groundwater level is in excess of 2 m below the underside of the floor slab, an effective drainage system is in place in the study area and, the exterior grade is at least 200 mm below the underside of the slab, then a subfloor drainage system will not be required.

4.5 Seismic Site Classification

The 2012 Ontario Building Code (OBC2012) requires the assignment of a Seismic Site Class for calculations of earthquake design forces and the structural design based on a two percent probability of exceedance in 50 years. According to the 2012 OBC, the Seismic Site Class is a function of soil profile, and is based on the average properties of the subsurface strata to a depth of 30 m below the ground surface. The 2012 OBC provides the following three methods to obtain the average properties for the top 30 m of the subsoil strata:

- Average shear wave velocity
- Average Standard Penetration Test (SPT) values (uncorrected for overburden)

• Average undrained shear strength

Based on the results of the conducted geotechnical investigation and considering the maximum depth of investigation, the Site can be classified as Class 'C' (Very Dense Soil and Soft Rock) for seismic load calculations subjected to code requirements. The corresponding acceleration-based Site coefficient (F_a) and velocity-based Site coefficient (F_v) can be obtained from Table 4.1.8.4.B and Table 4.1.8.4.C, accordingly, of the NBC-2010. Based on the information obtained from the field investigation at the Site there is no evidence of existence of soil types that satisfy the conditions of Site Class "E" type soils (NBCC 2010 -Table 4.1.8.4.A) within the investigated depth of overburden.

4.6 Depth of Frost Penetration

A permanent soil cover of 1.2 m or its thermal equivalent synthetic insulation is required for frost protection of foundations (foundations in unheated areas). All exterior footings, footings beneath unheated areas and foundations exposed to freezing temperatures should have at least such earth cover or equivalent synthetic insulation for frost protection. During winter construction exposed surfaces to support foundations must be protected against freezing by means of loose straw and tarpaulins, heating, etc.

4.7 Lateral Earth Pressures

Any retaining structures must be designed to resist lateral earth pressure. Structures subject to unbalanced earth pressures such as shoring systems and other similar structures must be designed to resist a pressure that can be calculated based on the following equation:

$$P= K [\gamma(h-h_w) + \gamma' h_w + q] + \gamma_w h_w$$

where:

- P = the horizontal pressure at depth, h (m)
- K = the earth pressure coefficient,
- γ = the bulk unit weight of soil, (kN/m³)
- γ ' = the submerged unit weight of soil, (kN/m³)
- γ_w = the unit weight of water, (kN/m³)
- $h_w =$ the depth below the groundwater level (m)
- q = the complete surcharge loading (kPa)

Where elevated groundwater level is not anticipated to be present or that a perimeter drainage system is used to eliminate hydrostatic pressures on the soil retaining structure, the above noted expression will be simplified as follows:

 $P = K(\gamma h + q)$

Based on the subsurface conditions encountered at the Site, the following design parameters may be used for the design of the soil retaining structures:

	-					
	Dry Unit	Angle of Internal Friction	Coefficient of Lateral Earth Pressure			
Soil	vveight γ (kN/m ³)	φ	Coefficient of Active Earth Pressure K _a	Coefficient of at Rest Earth Pressure K_o	Coefficient of Passive Earth Pressure K _p	
Earth Fill	19	28	0.4	0.5	2.7	
Native Sand Soil	20	30	0.3	0.5	3.0	
Granular "A"	21	38	0.3	0.4	4.2	
Granular "B"	21	35	0.3	0.4	3.7	

Table 4.7 - Design Parameters for Active, At Rest, and Passive Earth Pressures

Note: Values given for horizontal earth pressures are for horizontal backfill. For sloping backfill, the design requirements outlined in the Canadian Foundation Engineering Manual should be used.

It is to be noted that large deformation will be required prior to the full mobilization of passive earth pressure and mobilization of full active or passive resistance requires a measurable and significant wall movement or rotation. Therefore, unless the structural element can tolerate these deflections, the at-rest earth pressure should be used in design.

5. Pavement Design

5.1 Subgrade Preparation

Earth fill consisting predominantly of silty clay to silty sand soils was encountered in all boreholes. The existing fill is considered suitable to support pavements for potential access roads and parking areas subject to proof-rolling, re-compaction, inspection and approval by qualified personnel. The finished subgrade must be free of all loose and deleterious materials. It is recommended that any subgrade surfaces comprising of existing fill be inspected for obvious soft/loose areas and presence of deleterious materials. Should such areas be found, GHD can provide appropriate advice for replacement of the material and addressing local weak areas at that time.

If new fill is required to raise the grade, selected on-site fill could be used, provided it is free of any deleterious material. The fill should be placed in large areas where it can be compacted by a heavy vibratory roller. Any fill placed to increase or level the grade must be compacted to a minimum 98 percent SPMDD in lifts not exceeding 200 mm. In-situ density testing to monitor the effectiveness of the compaction equipment in achieving the required densities is also recommended.

5.2 Recommended Pavement Structure

The following table summarizes the minimum pavement structures recommended for the design of the potential driveways and parking areas. The pavement designs include a Heavy Duty for access routes and a Standard Duty for car parking areas.

Table 5.2 Recommended Pavement Structure

Pavement Layer	Compaction Requirements	Light Duty Pavement Design	Heavy Duty Pavement Design
Surface Course Asphaltic Concrete HL3 (OPSS 1150)	91% to 96.5% Maximum Relative Density (OPSS 310)	40 mm	40 mm
Base Course Asphaltic Concrete HL8 (OPSS 1150)	92% to 97.5% Maximum Relative Density (OPSS 310)	50 mm	60 mm
Base Course: Granular 'A' or 19mm Crusher Run (OPSS1010)	100% Standard Proctor Maximum Dry Density	150 mm	150 mm
Sub-base Course: Granular B or 50mm Crusher Run (OPSS1010)	98% Standard Proctor Maximum Dry Density	250 mm	350 mm

If pavement construction occurs in wet inclement weather it may be necessary to provide additional subgrade support for construction traffic by increasing the thickness of the granular sub-base.

5.3 Drainage

Grading adjacent to pavement areas should be designed so that water is not allowed to pond adjacent to the outside edges of the pavement. Also, the road subgrade should be free of depressions and sloped (preferably at a minimum grade of two percent) to provide effective drainage toward the edge of road and toward catch basins.

6. Construction Consideration

6.1 Site Servicing

Underground service lines can be founded on either undisturbed native soils or a prepared fill subgrade. The suitability of the native soils to provide adequate support for buried services must be verified and confirmed on site by qualified geotechnical personnel experienced in such works.

It is recommended that prior to commencing the construction of the site servicing, consideration be given to the excavation of a series of trial excavations along the alignment of the proposed service lines to determine more accurately the soil behavior and whether or not any dewatering works will be required.

The bedding and sand cover materials for the pipes should be adequately compacted to provide support and protection. Provided the base of the service line is free of all loose and deleterious materials, the pipe bedding should comply with a Class B bedding configuration as per the requirements of OPSD 802.030 (rigid pipe) and/or OPSD 802.010 (flexible pipe). Where a loose deposit is present at the base of excavation or disturbance of the trench base has occurred, the disturbed soils should be sub-excavated and replaced with suitably compacted granular fill. If the native soil at pipe founding level is too wet silty/clayey soil, clear stone may be used as bedding material, but must be wrapped with a suitable filter fabric.

If existing fill materials are found at the pipe invert level, the exposed subgrade should be visually inspected. Wet, soft/loose, highly organic or otherwise unsuitable fills should be sub-excavated and replaced with bedding materials or clean fills compacted to minimum of 95% SPMDD.

Trench spoils should not be placed closer than one metre, or half the trench depth, from the top of the trench sidewalls and the safety guidelines provided by OHSA (Section 6.2) should be strictly adhered to for the open excavations.

Backfilling of trenches can be accomplished by reusing the excavated soils or similar fill material or granular soil, provided the moisture content of the material is maintained within ±2 percent of optimum and the fill is free of topsoil, organics and any deleterious material. The fill placed in excavated trenches should be in loose lifts not exceeding 200 mm thick and compacted to not less than 95 percent of its Standard Proctor Maximum Dry Density (SPMDD). Alternatively, if the excavated soils are not suitable for backfilling, the service pipes can be backfilled using OPSS Granular "B" material or approved earth fill compacted to at least 95 % of its Standard Proctor Maximum Dry Density (SPMDD).

6.2 Excavation and Temporary Shoring

Excavations must be carried out in accordance with the Occupational Health and Safety Act (OHSA) and Regulations for Construction Projects. The OHSA regulations require that if workmen must enter an excavation deeper than 1.2 m, the excavation must be suitably sloped and/or braced in accordance with the OHSA requirements. OHSA specifies maximum slope of the excavations for four broad soil types as summarized in the following table:

Soil Type	Base of Slope	Maximum Slope Inclination
1	Within 1.2 metre of bottom	1 horizontal to 1 vertical
2	Within 1.2 metre of bottom of trench	1 horizontal to 1 vertical
3	From bottom of excavation	1 horizontal to 1 vertical
4	From bottom of excavation	3 horizontal to 1 vertical

Table 6.2 - Maximum Site Slope Inclination for Excavations

OHSA Section 226 defines the four soil types as follows:

Type 1 soil:

- a) Hard, very dense, and only able to be penetrated with difficulty by a small sharp object
- b) Has a low natural moisture content and a high degree of internal strength
- c) Has no signs of water seepage; and
- d) Can be excavated only by mechanical equipment

Type 2 soil:

- a) Very stiff, dense and can be penetrated with moderate difficulty by a small sharp object;
- b) Has a low to medium natural moisture content and a medium degree of internal strength; and
- c) Has a damp appearance after it is excavated

Type 3 soil:

- a) Stiff to firm and compact to loose in consistency or is previously excavated soil;
- b) Exhibits signs of surface cracking;
- c) Exhibits signs of water seepage;
- d) If it is dry, may run easily into a well-defined conical pile; and
- e) Has a low degree of internal strength

Type 4 soil:

a) Soft to very soft and very loose in consistency, very sensitive and upon disturbance is significantly reduced in natural strength;

- b) Runs easily or flows, unless it is completely supported before excavating procedures;
- c) Has almost no internal strength;
- d) Wet or muddy; and
- e) Exerts substantial fluid pressure on its supporting system (Ontario Regulation 213/91, s. 226-5)

Minimum support system requirements for steeper excavations are stipulated in Sections 235 through 238 and 241 of the Act and Regulations and include provisions for timbering, shoring and moveable trench boxes.

The fill within the Site above the groundwater table can be classified as Type 3 soils. If affected by groundwater seepage, these soils must be considered as Type 4 soils. The compact granular soils identified at deeper depths must also be considered Type 3 soils above groundwater level and as Type 4 if affected by ground water. The hard or dense to very dense soil type native materials could be considered as Type 2 when not impacted by seepage. Below the local ground water table, these soils could be considered as type 3 or for regarding their behavior (to the discretion of the Site Geotechnical Engineer). The highest number soil type identified in an excavation must govern the excavation slopes from top to bottom of the excavation.

Unsupported excavations would be temporarily stable for short time periods at angles of 1.5H:1.0V in the existing fill material and cohesionless granular soils but will require erosion protection to minimize sloughing, riling and washout. If the above recommended excavation side slopes cannot be maintained due to lack of space or any other reason, the excavation sides must be supported by an engineered shoring system. The shoring system should be designed in accordance with the latest edition of Canadian Engineering Foundation Manual (CFEM) and the OHSA Regulations for Construction Projects.

The fill and native deposits, to be penetrated for foundation construction at this Site, could contain cobble and boulder sized particles. Excavations carried out using mechanical excavators and auger machines may be slow if significant amounts of cobbles and boulders are encountered. The risk and responsibility for these issues must be addressed in the contract documents for foundation and excavation contractors.

6.3 Temporary Ground Water Control

The measured depth of the groundwater table within wells installed at the Site ranged between 2.64 and 5.84 mBGS (Elev. 76.08 and 78.36 m) indicating a relatively shallow groundwater table at this

Site. A slight artesian condition (water head difference) of 0.8 m and 1.7 m was recorded in the MW05-15 and MW10-16 deep and shallow monitoring wells respectively. No grade difference was noted between the water level in MW12D-16 and MW12S16. Based on the water level information obtained at the Site, shallow foundation for a slab-on-grade structure (no basement) will likely not extend to depths deeper than the local ground water seepage. However, a building with one or two level of basement will likely encounter groundwater seepage. Due to the granular nature of the native soils, excavations carried out below the water table will encounter significant water seepage and unsupported excavations cannot safely proceed until such time the groundwater table is lowered to a minimum depth of 0.5 m below the base of the excavation has been achieved. Due to the generally granular nature of the native deposits, it is likely that seepage, if encountered, can be managed using filtered sumps. The water table should be lowered by pumping from sealed, closely spaced well points.

Surface run-off should be directed away from the open excavations. The design, equipment, installation, maintenance, and removal of water control methods during excavation and backfill operations should be the responsibility of the contractor. The contractor should assess the ambient ground water level at the Site and decide the method and technique of dewatering based on the soils information provided in this report. The contractor should be prepared to remove any groundwater or precipitation runoff from within the excavations. This should be possible in most instances by the strategic placement of sumps.

6.4 Backfilling

Backfilling of excavations can be accomplished by reusing the excavated inorganic soils or similar fill material provided the moisture content is maintained within two percent (2%) of optimum. Based on the results of laboratory testing, the granular fill and native soils encountered in the boreholes are generally suitable for re-use on the site. The sandy soils in general appear to exhibit moisture contents which are considered to be near or slightly below the laboratory optimum for compactable soil. Some of the samples obtained below the anticipated groundwater table appear to exhibit moisture contents which are considered to be above the laboratory optimum for compactable soil, and drying of these soils may be required during construction. If such native soils are to be reused as a structural fill, it should be anticipated that reworking of the soils through slight drying the wet soil will be necessary to facilitate compaction. Control of moisture content during placement and compaction will be essential for maintaining adequate compaction.

Backfill materials used for Site grading or backfilling in settlement sensitive areas should be placed in thin lifts not exceeding 200 mm and thoroughly compacted to a minimum of 98 percent Standard Proctor Maximum Dry Density (SPMDD). Boulders larger than 150 mm should be excluded from the backfilling material in the settlement sensitive areas such as beneath pavements and concrete slabs.

All excavations must be widened sufficiently to accommodate the appropriate compaction equipment. Provided the trenches are backfilled with materials similar to the adjacent subgrade soils then frost tapers will not be required.

6.5 Construction Monitoring

The foundation installations must be closely monitored and inspected by qualified personnel to ensure that the founding achieved is consistent with the design bearing intended by the design engineer. The on-site review of the condition of the foundation soil as the foundations are constructed is an integral part of the geotechnical design function and is required by Section 4.2.2.2 of the Ontario Building Code 2012.

The ground conditions will vary across the site depending on the final design grades and therefore, the preparation of the sub-grade and the compaction of all materials should be monitored at the time of construction to confirm material quality and thickness and to ensure adequate compaction.

All backfilling should be supervised to ensure that proper materials are employed and that adequate compaction is achieved. Strict quality control guidelines should be followed during the placement of fill materials.

Qualified Geotechnical personnel should inspect and test all stages of the development. Specifically, they should ensure that the materials and conditions comply with this geotechnical assessment report. In addition, qualified geotechnical personnel should provide material testing services prior to and during foundation preparation and construction. Should soil conditions be encountered that vary from those described in this report, our office should be informed immediately such that the proper measures are undertaken.

6.6 Soil Corrosivity Potential

Corrosivity testing was carried out on six (6) select samples extracted from the boreholes in accordance with ASTM and CSA Standards and the results were compared with CSA standards to determine the potential of sulphate attack on concrete and with the American Water Works Association (AWWA) C 105 to assess soil corrosivity potential on ductile iron pipes and fittings. Corrosivity testing as described by the American Water Works Association (AWWA) includes soil resistivity, pH, sulphide indication, redox potential, and moisture content. Points are assigned to the sample based on the results of the tests. A soil that has a total point score of 10 or more is considered to be potentially corrosive to ductile iron pipe. The potential for sulphate attack on concrete (class of exposure) is determined using Table 3 provided in CSA A23.1-04.

The selected soil samples were submitted to AGAT Laboratory (AGAT) for chemical analyses. AGAT has indicated that they can determine sulphide and chloride using a chromatograph, the pH using a pH meter, resistivity using an electrical conductivity test and redox using a redox potential electrode. These test procedures vary from AWWA and therefore some interpretation of the data was required in order to assess corrosion potential. AGAT has indicated that they can determine water-soluble sulphate content using analytical procedures in accordance with CSA Standard A23.2-3B. All samples were placed into laboratory-supplied containers, labelled and submitted under chain-of-custody protocol to AGAT. Analytical results received from the laboratory are provided in Appendix C.

6.6.1 Corrosivity on Construction Concrete

The potential for sulphate attack on construction concrete (class of exposure) is determined using Table 3 provided in CSA A23.1-09. Table 3 of the Canadian Standards Association (CSA) document A23.1 04/A23.2 09 'Concrete Materials and Methods of Concrete Construction/ Methods of Test and Standard Practices for Concrete' classifies the degree of exposure into the following three (3) classes:

Degree (Class) of Exposure	Water Soluble (SO4) in Soil Sample (%)
Very Severe (S-1)	> 2.0
Severe (S-2)	0.20 – 2.0
Moderate (S-3)	0.10 - 0.20

Table 6.5.1 - Construction Concrete Degree (Class) of Exposure

The aggressiveness of the soil on concrete in contact with the soils was evaluated by performing water-soluble sulphate content tests on six (6) select soil samples. The tests revealed that the sulphate concentrations in the soil samples were between 5 and 210 μ g/g or between 0.0005 and 0.0210 %.

The results of sulphate ion content analysis indicate the soil samples contain low levels of sulphate ion that are below the class of exposure levels outlined in CSA A23.1-04. Therefore, in view of the test results, the degree of exposure of the sub-surface construction concrete to sulphate ion content from Site soils within the vicinity of the tested samples/boreholes is considered to be low and no special precautions are required to provide protection against sulphate attack such as special cements or mixtures. As such, ordinary Type 10 Portland Cement could be used for the design of the concrete mix as far as soil exposure is concerned. However, concrete in contact with sewage may require a higher class of sulphate resistance. The analytical data are attached to this report in Appendix C.

6.6.2 Corrosivity on Grey Ductile Cast Iron

In order to evaluate soil corrosivity on grey ductile cast iron elements, six (6) select soil samples were subject to corrosivity package. The analysis for soil corrosivity was conducted on a system of assigning points based on the results of the chemical tests, as described in Table A.1 of the American Water Works Association (AWWA) publication ANSI/AWWA C105/A21.5-10. Based on the AWWA publication points system, a soil that has a total score of 10 or greater is considered to be potentially corrosive to ductile iron pipe.

The ANSI/AWWA rating System uses soil resistivity, pH value, redox potential, sulphide content and drainage conditions as the main indicators of soil aggressiveness. In this procedure, a point system is used to evaluate the corrosivity of the tested soil. Points are assigned to each indicator in accordance with its anticipated contribution to the total corrosion potential of the soil as determined by laboratory testing and visual examination of the soil.

The chemical analysis was carried out by AGAT Laboratories (AGAT), a specialist chemical testing laboratory. The test results are provided in Appendix C. The sulphide and chloride concentrations of the samples tested were measured using a chromatograph, the pH using a pH meter, resistivity using an electrical conductivity test, and redox using a redox potential electrode. Some interpretation of the data was required in order to assess corrosion potential.

It is noted that sulphide analysis presented in AWWA is a qualitative test where a positive, trace, or negative determination is based on the presence of bubbles as a result of a chemical reaction. The results obtained by AGAT present a concentration that is unrelated to the scale provided by AWWA. It was assumed that samples with a laboratory result less than the reported detection limit (RDL) for sulphide would be considered to have a 'trace' condition (score of 2) and results greater than the RDL would be considered to be positive and a maximum score of 3.5 was selected. Also, for moisture content determination, the observations at the time of drilling were used for this analysis and the determination of wet, moist or dry were obtained from the description presented on the borehole logs.

As noted above, the chloride content of each sample was also tested. However, since the AWWA system does not use chloride as an indicator of corrosivity, an assessment of the potential contribution of the measured chloride concentration to corrosion was based on our experience on similar soil condition.

Table below summarizes the ANSI/AWWA rating of the tested soil samples on their potential for corrosion towards buried grey or ductile cast iron pipe. A reference score of 10 points indicates limit of soil corrosion potential.

	Parameter Concentration / ANSI/AWWA Point Rating						
Parameter	MW01-16 SS3	BH02-16 SS3	BH06-16 SS5	BH07-16 SS3	MW12-16 SS3	BH13-16 SS3	
Depth (m)	1.7-2.0	1.7–2.0	3.2-3.5	1.7-2.0	1.7-2.0	1.7-2.0	
Soil Type	Silty Sand	Silty Sand	Silty Clay	Silty Sand	Silty Sand	Silty Clay	
Sulfide (%)	<0.05/2	<0.05/2	0.50/3.5	<0.05/2	<0.05/2	<0.05/2	
pH (Units)	8.39/0	8.68/3	8.25/0	8.96/3	8.55/3	8.28/0	
Resistivity ((Ω*cm))	11600/0	12200/0	3160/0	6620/0	10200/0	5050/0	
Redox Potential (mV)	283/0	327/0	249/0	267/0	263/0	265/0	
Natural Moisture Content (%)	Poor Drainage /2	Poor Drainage /2	Poor Drainage /2	Poor Drainage /2	Poor Drainage /2	Poor Drainage /2	
Total Points	4.0	7.0	5.5	7.0	7.0	4.0	

Table 6.6.2 - ANSI/AWWA Soil Corrosivity Potential

Based on the test results and using the guidelines provided in the AWWA publication ANSI/AWWA C105/A21.5-10, all of the tested samples were assigned a score that ranged between 4.0 and 7.0 points. Therefore, according to the ANSI/AWWA rating system, these soil samples do not pose an elevated potential for corrosion on grey or ductile iron pipe.

It is noted that there may be other overriding factors in the assessment of soil corrosion potential, such as application of deicing salts on the ground and subsequent leaching into the subsurface soils, stray currents, the nature of effluent conveyed by underground pipes, etc.

7. Limitations of the Investigation

This report is intended solely for Ontario Infrastructure and Land Corporation and is prohibited for use by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the Client and recipient's sole risk, without liability to GHD. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The recommendations made in this report are in accordance with our present understanding of the project, the current site use, ground surface elevations and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of geotechnical engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

All details of design and construction are rarely known at the time of completion of a geotechnical study. The recommendations and comments made in the study report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design.

By issuing this report, GHD is the geotechnical engineer of record. It is recommended that GHD be retained during construction of all foundations and during earthwork operations to confirm the conditions of the subsoil are actually similar to those observed during our study. The intent of this requirement is to verify that conditions encountered during construction are consistent with the findings in the report and that inherent knowledge developed as part of our study is correctly carried forward to the construction phases.

It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments included in this report are based on the results obtained at the test locations only (five geotechnical exploratory boreholes). The subsurface conditions confirmed at the test locations may vary at other locations. The subsurface conditions can also be significantly modified by the construction activities on site (ex. excavation, dewatering and drainage, blasting, pile driving, etc.). These conditions can also be modified by exposure of soils or bedrock to humidity, dry periods or frost. Soil and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations and conditions may become apparent during construction which could not be detected or anticipated at the time of our investigation. Should any conditions at the site be encountered which differ from those found at the

test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations. If changed conditions are identified during construction, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by GHD is completed.

All of which is Respectfully Submitted, GHD

5. Shahangis

Karl Roechner, M.A.Sc., P. Eng.

Figures

GHD | Preliminary Geotechnical Investigation | 076829 (4)

Source: Microsoft Product Screen Shot(s) Reprinted with permission from Microsoft Corporation, Acquisition Date MAY 2011, Accessed: 2016

INFRASTRUCTURE ONTARIO 700 GORDON STREET, WHITBY, ONTARIO PRELIMINARY GEOTECHNICAL INVESTIGATION

076896-00 Aug 16, 2016

SITE LOCATION MAP

FIGURE 1

CAD File: I:\CAD\6-chars\07----\0768--\076896\076896-REPORTS\076896-00(004)GN\076896-00(004)GN-TO003.DWG

CAD File: I:\CAD\6-chars\07----\0768--\076896\076896-REPORTS\076896-00(004)GN\076896-00(004)GN-TO002.DWG

GHD | Preliminary Geotechnical Investigation | 076829 (4)

Appendix A Borehole Logs

Notes on Borehole and Test Pit Reports

Soil description :

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

	Classification	(Unified svs	stem)			Terminol	ogy	
Clay	< 0.002 mm	、 ,	,				0,	
Silt	0.002 to 0.075 mm							
Sand	0.075 to 4.75 mm	fino	0.075 to 4.25 mm		"tra	Ce" me"	1-10% 10-20%	
Sanu	0.075 10 4.75 1111	modium	0.075 to 4.25 mm		SU	ne octivo (cilty, condy	۲0-20 <i>%</i>	
		medium	0.425 to 2.0 mm		auje "an	a"	20-33%	
		coarse	2.0 10 4.75 mm		an	u	35-50%	
Gravel	4.75 to 75 mm	fine coarse	4.75 to 19 mm 19 to 75 mm					
Boulders	>300 mm							
Relativ grai	ve density of nular soils	Standa inde	ard penetration ex "N" value		Consistency of Undrained shear cohesive soils strength (Cu)		ed shear h (Cu)	
		(BLOV	NS/ft – 300 mm)				(P.S.F)	(kPa)
					Ve	ery soft	<250	<12
Ve	ery loose		0-4			Soft	250-500	12-25
	Loose		4-10			Firm	500-1000	25-50
C	Compact		10-30			Stiff	1000-2000	50-100
	Dense		30-50		Ve	ery stiff	2000-4000	100-200
Ve	ery dense		>50			Hard	>4000	>200
Rock quality designation			_ 7		STRATIGRAPH			
"RQE)" (%) Value	0	Quality					<u>п т п</u>
	<25	,	Very poor			00	0	
	25-50		Poor			Gravial		
	50-75		Fair		Sand	Glavel		Bedrock
	75-90		Good					XXXXXX
	>90		Excellent				$\sim \sim$	
					Silt	Clay	Organic soil	Fill
Samples: Type and Number The type of sample recovered is shown on the log by the abbreviation listed hereafter. The numbering of samples is sequential for each type of sample. SS: Split spoon ST: Shelby tube SSE, GSE, AGE: Environmental sampling PS: Piston sample (Osterberg) RC: Rock core GS: Grab sample								
Recovery The recovery, sh	hown as a percentage, is	the ratio of le	ength of the sample obta	ined to the distand	ce the sampler was o	driven/pushed into th	ne soil	
RQD								
The "Rock Qualithe run.	ity Designation" or "RQD"	value, expre	essed as percentage, is t	the ratio of the tota	al length of all core fr	agments of 4 inches	s (10 cm) or more to th	ne total length o
IN-SITU TEST	rs:							
N: Standard penetration index Nc: Dyna		N _c : Dynamic	amic cone penetration index		k: Permeab	k: Permeability		
R: Refusal to pe	enetration			Cu: Undrained shear strength Pr: Pressure meter		I	ABS: Absorption (F	Packer test)
LABORATOR	Y TESTS:							
								O.V.: Organic
Ip: Plasticity inde	ex	H: Hy	drometer analysis	A: Atterber	g limits	C: Consolidatio	on - II	vapor
Wp: Plactic limit	: Liquid limit GSA: Grain size analysis w: Wate		w: vvater c	onient	CHEM: Chami	an cone		
າງກໍ່ມີເປັນເປັນເປັນ				γ. Unit wei	yı it		uai aliaiy515	

GHD PS-020.01 - Notes on Borehole and Test Pit Reports - Rev.0 - 07/01/2015
REFEREN	ICE No.:								ENCLOSURE No.: 1	
			BOREHOLE No).: _		MW0	1-16		E	BOREHOLE REPORT
	Gh		ELEVATION:		81	.62 ו	m			Page: <u>1</u> of <u>2</u>
CLIENT:	Ir	nfrastructure Ontario (I	0)						LEC	GEND
PROJECT	: <u> </u>	reliminary Geotechnic	al Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION	N:7	00 Gordon Street, Whi	tby, Ontario							ST - SHELBY TUBE
DESCRIBE	ED BY: S	. Howell	CHECKED BY:		S. Sha	hangia	an		⊥⊔ Ţ	- WATER LEVEL
DATE (ST	ART):1	8 July 2016	DATE (FINISH)	: _	18 July	2016				
Depth	Elevation (m) Strationanhy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	$ \begin{array}{c c} Shear test (Cu) & \bigtriangleup \ Field \\ Sensitivity (S) & \Box \ Lab \\ \bigcirc \ Water content (\%) \\ \begin{matrix} {\color{red} {\color{black} {b$
Feet Metres	81.62	GROU				%			N	10 20 30 40 50 60 70 80 90
	81.54	FILL : SILTY SAND, trac oxidized seams, b	e clay and gravel, rown, moist, firm		SS1	58	18	3-3-4-10	7	0.15 m - 33
		NATIVE : SILTY SAND TILL brown, moist, com	., oxidized seams, apact to dense	M	SS2	100	10	11-13-16-32	29	Bentonite Seal
6 — 7 — 2.0		hard Gravel : 2%, Sanc : 9%	l : 52%, Silt : 37%, Clay	M	SS3	100	6	12-15-18-30	33	
8 9 9	79.33	SANDY SILT TILL oxidized stains, br	., trace clay and gravel, own, moist, very dense	X	SS4	75	8	16-32-50	82	2.74 m
				X	SS5	50	8	42-50/ 125mm	100	#2 Silica Sand
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				X	SS6	71	6	24-45-50/ 125mm	100	
$ \begin{array}{c} 19 \\ 20 \\ -1 \\ 21 \\ -1 \\ 22 \\ -1 \\ 23 \\ -1 \\ 7.0 \end{array} $		grey			SS7	67	7	17-26-30-36	56	
24				X	SS8	59	7	21-41-50/ 125mm	100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				×	SS9	100	8	50/ 125mm	100	

IL LOG WITH GRAPH+WELL 076896-GEO.GPJ INSPEC SOL.G

REFERENC	E No.:	076896						i		EN	LOS	URE	NO.	:		1	
			BOREHOLE No).: _		MWC)1-16		E	30	RE	НС)L	ΕI	RE	PO	RT
	GHD		ELEVATION:		81	.62	m				Page	e:	2	of	2	-	
CLIENT:	Infra	structure Ontario (I	0)						LE	GEN	<u>ND</u>						
PROJECT:	Preli	iminary Geotechnica	al Investigation						\boxtimes	SS	- 3	SPLI	T SP	00	N		
LOCATION:	700	Gordon Street, Whi	tby, Ontario							ST	- 3	SHEL	BY		BE		
DESCRIBED	D ВҮ: <u>S. H</u>	owell	CHECKED BY:		S. Sha	hangi	an		⊥⊔ Ţ	RU	- I - \	WAT	ERL	.EVI	ΞL		
DATE (STAF	RT): <u>18 J</u>	uly 2016	DATE (FINISH)	_	18 July	2016	;										
Depth	Elevation (m) Stratigraphy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Sh Se O W _p V	ear te nsitivi Wat , Atte "N" v ows /	st (Cu ty (S) er cou rberg /alue 12 in.	ı) ntent limits -30 c	(%) s (%) xm)	△ F □ L	ïeld .ab	
Feet Metres 8	81.62	GROU	ND SURFACE			%			N	10	20 3	0 40	50 6	0 70	80 9	0 	$\sim \sim$
33		\SHALE-BEDROC	K. inferred. arey /	X	SS10 SS11	100	9	24-50/ 75mm 50/	100					12.2	25 m		
$\begin{array}{c} 41 & -12.25 & 6 \\ 42 & -1 \\ 43 & -1 \\ 43 & -1 \\ 44 & -1 \\ 45 & -1 \\ 46 & -1 \\ 46 & -1 \\ 47 & -1 \\ 48 & -1 \\ 49 & -1 \\ 49 & -1 \\ 49 & -1 \\ 49 & -1 \\ 51 & -1 \\ 5$	69.37	SHALE-BEDROCC END OF BOREH(NOTE : End of Borehole a Groundwater level upon completion 50 mm diameter n at 4.70 m bgs Groundwater level August 16, 2016 bgs denotes 'below	K, inferred, grey					50mm									

RE	REFERENCE No.:076896									ENCLOSURE NO.: 2		
					BOREHOLE No).: _		BH0	2-16		Е	OREHOLE REPORT
			שח		ELEVATION:		80).16 i	m			Page: <u>1</u> of <u>2</u>
CL	IENT:		Infra	structure Ontario (IC	D)						LEC	GEND
PR	OJECT	:	Prel	iminary Geotechnica	al Investigation						\boxtimes	SS - SPLIT SPOON
LO	CATIO	N:	700	Gordon Street, Whit	by, Ontario							ST - SHELBY TUBE
DE	SCRIB	ED BY:	<u>S. H</u>	owell	CHECKED BY:		S. Sha	hangia	an		⊥L ▼	- WATER LEVEL
DA	TE (ST	ART):	28 J	uly 2016	DATE (FINISH)	: _	28 July	2016				
	Leptn	Elevation (m)	Stratigraphy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Feet	Metres	80.16		GROUI	ND SURFACE			%			N	10 20 30 40 50 60 70 80 90
1 - 2 -	0.30	79.86		TOPSOIL with roo FILL : SILTY CLAY, som	tlets : 300 mm e sand and gravel,	-	SS1	50	14	3-5-5-7	10	
3	1.0 1.0	79.40		NATIVE : SILTY SAND TILL	, brown/grey, moist,	\mathbb{N}	SS2	100	9	7-9-16-27	25	
5 — 6 —	2.0			compact to very de	ense		SS3	79	8	18-37-50/ 125mm	100	
7 — 8 — 9 —						X	SS4	63	7	28-43-50/ 100mm	100	
10 -	- - - - - - - -	77.11		SILTY CLAY/CLAY to some sand, occ damp to moist, har	YEY SILT TILL, trace asional gravel, grey, d	X	SS5	83	6	18-29-46-50/ 100mm	75	
12	5.0			Gravel : 0%, Sand 42%	: 2%, Silt : 56%, Clay :	X	SS6	42	15	39-50/ 125mm	100	
	6.0			some silt		X	SS7	29	18	12-16-31-36	47	
24 25 25 25 26 27 27 28 28 28	8.0					X	SS8	75	16	19-37-50/ 125mm	100	
29 – 29 – 30 – 30 – 30 – 30 – 32 – 30 – 32 – 32	9.0					X	SS9	67	14	18-42/ 100mm	100	

REFERENCE No.:	076896							ENCLOSURE NO.: 2
	BOREHOLE	No.:		BH0	2-16		B	
GHD	ELEVATION:		80).16	m			Page: 2 of 2
CLIENT: Infras	structure Ontario (IO)						LEC	GEND
PROJECT: Prelin	minary Geotechnical Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION: 700 C	Gordon Street, Whitby, Ontario							ST - SHELBY TUBE
DESCRIBED BY: S. Ho	owell CHECKED B	Y:	S. Sha	hangi	an		UU ▼	- WATER LEVEL
DATE (START) ⁻ 28.lu		н).	28 July	2016	;		-	
			20 0 0 0 0	2010				
								Shaar toot (Cu) A Field
Depth Elevation (m) Stratigraphy	DESCRIPTION OF SOIL AND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	enetration	Sensitivity (S) \Box Lab \bigcirc Water content (%) $\underset{w_p, W_i}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}{\overset{\text{I}}{\overset{\text{I}}}}{\overset{\text{I}}{\overset{\text{I}}}}}}}}}}$
Feet Metres 80.16	GROUND SURFACE			%				(blows / 12 in30 cm)
33								
34 -								
35 —	shale fragments	×	SS10	8	11	50/	100	
36 - 11.0						50mm		
37 —								
38 -								
39 - 12 0								
40 12.20 67.96	SHALE-BEDROCK, weathered, grey		SS11	2	22	50/	100	
						125mm		
42	END OF BOREHOLE:							
43 - 13.0	NOTE : End of Borehole at 12.33 m bas on							
44	inferred bedrock Borehole was dry upon completion							
45 —	Borehole backfilled with cement grout to							
46 — 14.0	the top bgs denotes 'below ground surface'							
47 —								
48 -								
49 - 15.0								
50 —								
51								
$\frac{9}{8}$ 52 $-\frac{1}{160}$								
56 <u>1</u> 17.0								

REFEREN	ICE No.	:	076896								ENCLOSURE No.: 3
	6			BOREHOLE N	.:		MWO	3-16		E	BOREHOLE REPORT
				ELEVATION:		79	9.24	m			Page: <u>1</u> of <u>1</u>
CLIENT:		Infra	structure Ontario (I	C)						LE	GEND
PROJECT	:	Preli	iminary Geotechnica	al Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION	N:	700	Gordon Street, Whi	tby, Ontario							ST - SHELBY TUBE
DESCRIBE	ED BY:	<u>S. H</u>	lowell	CHECKED BY:		S. Sha	hangi	an		⊥⊥ Ţ	- WATER LEVEL
DATE (ST	ART):	18 J	uly 2016	DATE (FINISH)	: _	18 July	2016	;			
Depth	Elevation (m)	Stratigraphy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	$ \begin{array}{c c} Shear test (Cu) & \bigtriangleup \ Field \\ Sensitivity (S) & \Box \ Lab \\ \bigcirc \ Water content (\%) \\ H_{\mu} \ Atterberg limits (\%) \\ \bullet \ \ "N" \ Value \\ (blows / 12 in30 \ cm) \end{array} $
Feet Metres	79.24		GROU	ND SURFACE			%			Ν	10 20 30 40 50 60 70 80 90
0.08	79.16		TOPSOIL with roo FILL : SILTY CLAY, som slightly plastic, bro	tlets : 75 mm e sand, trace gravel, wn, moist, firm		SS1	83	16	2-3-5-8	8	0.15 m m m
	77 70	\bigotimes	oxidized seams, g	reyish brown, stiff		SS2	100	8	3-6-8-11	14	Bentonite Seal
6 7 2.0	11.12		NATIVE : SILTY SAND TILL gravel, brown, mo dense	, some clay, trace ist, dense to very		SS3	63	6	10-17-32-50	49	
8 — 9 — 9			Gravel : 2%, Sand : 12%	: 51%, Silt : 35%, Clay	X	SS4	50	6	18-50	50	2.29 m- #2 Silica Sand-
$ \begin{array}{c} 10 3.0 \\ - 3.13 \\ 11 \\ 12 \\ 13 - 4.0 \end{array} $	76.11		SAND TILL, trace wet, dense Gravel : 3%, Sand 9%	silt and gravel, brown, : 88%, Clay and Silt :	X	SS5A SS5B	83	7 16	10-12-16-24	 28	WL 3.16 m 8/16/2016 50mm Ø PVC Well Screen
14 — 4.27 - 4.35 15 —	74.97 74.89		BEDROCK-SHAL	E, inferred, grey	×	SS6	13	10	50/ 75mm	100	4.35 m
16 5.0 17 5.0 18 10			END OF BOREHO NOTE : End of Borehole a auger refusal	DLE: t 4.35 m bgs due to							
20 - 6.0			upon completion 50 mm diameter n at 4.35 m bgs Groundwater level	nonitoring well installed at 3.16 m bgs on							
22 - 7.0			August 16, 2016 bgs denotes 'belov	w ground surface'							
25 — 25 — 26 — 8.0											
27											
29 <u>-</u> 30 <u>-</u> 9.0											
й — +											

SOIL LOG WITH GRAPH+WELL 076896-GEO.GPJ INSPEC_SOL.GDT 19/8/16

REFERENCE No.:076896								ENCLOSURE No.: 4
СНО	BOREHOLE No.	.:_		BH0	4-16		В	BOREHOLE REPORT
	ELEVATION:		81	.85 ו	m			Page: <u>1</u> of <u>2</u>
CLIENT: Infrastructure Ontario	(10)						<u>LEC</u>	GEND
PROJECT: Preliminary Geotechni	cal Investigation						\square	SS - SPLIT SPOON
LOCATION:700 Gordon Street, W	nitby, Ontario							ST - SHELBY TUBE
DESCRIBED BY: S. Howell	CHECKED BY:	S	S. Sha	hangia	an		Ţ	- WATER LEVEL
DATE (START): 28 July 2016	DATE (FINISH):	_ 2	28 July	2016				
Stratigraphy Stration Stration	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab \bigcirc Water content (%) \blacksquare Atterberg limits (%) $Ψ_p$ W, $Ψ_1$ \bullet "N" Value (blows / 12 in30 cm)
Feet Metres 81.85 GRO	UND SURFACE			%			Ν	10 20 30 40 50 60 70 80 90
1 = 0.10 81.75 TOPSOIL with ro FILL : SILTY CLAY, so	me sand and gravel,	X	SS1	17	20	2-4-8-9	12	
$\begin{bmatrix} 3 \\ - \\ 4 \end{bmatrix} = 1.0$	d	$\left \right $	SS2	92	8	3-11-21-35	32	
5 - 1.52 80.33 6 - 2.0 80.33 NATIVE : SANDY SILT/SIL some clay and g	TY SAND TILL, trace to ravel, brown, damp to	X	SS3	50	4	12-21-50/ 125mm	100	0
7 moist, very dens 8 Gravel : 11%, Sa 0 Clay : 8%; NP	e Ind : 38%, Silt : 43%,	X	SS4	22	3	36-50/ 125mm	100	
		X	SS5	71	4	29-31/ 10mm	75	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		X	SS6 SS7	45 25	5	26-50/ 125mm 50/ 125mm	100	
23 6.86 74.99 • • • sand and gravel, wet, hard 24 • • • • • 25 26 8.0 • • • 26 8.0 • • • • 27 • • • • 28 • • • • 29 9.0 • • • 30 9.0 • • •	AYEY SILT TILL, some trace silt, grey, moist to	\times	SS8 SS9	42	8	42-50/ 100mm 43-50/	100	
31						100mm		

REFEREN	ICE No.	:	076896								ENC	LOS	URE	No.:		4	
				BOREHOLE N	lo.:		BHC	4-16		E	30	RE	НС)LF	ER	EP	ORT
	6	iHD		ELEVATION:		8	1.85	m				Page	: _2	2	of _	2	
CLIENT:		Infra	structure Ontario (IC	0)						<u>LE</u>	GEN	<u>ID</u>					
PROJECT	:	Prel	iminary Geotechnica	al Investigation						\boxtimes	SS	- 5	SPLIT	SP	OON		
LOCATIO	N:	700	Gordon Street, Whi	tby, Ontario							ST	- 5	SHEL	.BY 1			
DESCRIB	ED BY:	<u>S. H</u>	lowell	CHECKED BY	:	S. Sha	hangi	an		⊥LL ▼	RU	- r - V	VATE	ER L	VRE EVEL	-	
DATE (ST	ART):	28 J	uly 2016	DATE (FINISH): _	28 July	/ 2016	6									
Depth	Elevation (m)	Stratigraphy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Sh Se W _p W (blo	ear tes nsitivit Wate Atter '' "N" V	st (Cu ty (S) er cor rberg /alue 12 in	ntent (limits -30 cr	(%) (%) (%)	∆ Fielo] Lab	d
Feet Metres	81.85		GROU	ND SURFACE			%			N	10	20 3	0 40 3	50 60	708	0 90	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 69.65 69.52		SHALE-BEDROCI END OF BOREHO NOTE : End of Borehole a inferred bedrock Borehole was dry Borehole backfiller the top bgs denotes 'belov NP denotes 'non-p	<, inferred, grey DLE: t 12.33 m bgs on upon completion d with cement grout to v ground surface' plastic'		SS10	46	7	36-50/ 75mm 50/ 50mm	100							
$\begin{array}{c} 49 \\ 50 \\ 50 \\ 51 \\ 52 \\ 53 \\ 53 \\ 54 \\ 55 \\ 55 \\ 56 \\ 57 \\ 56 \\ 57 \\ 57 \\ 58 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59$)																

REFERENCE No.:076896										ENCLOSURE No.: 5	
				BOREHOLE No	.: _		NW0	5D-1	6	E	BOREHOLE REPORT
				ELEVATION:		8′	l.00 I	m		_	Page: <u>1</u> of <u>2</u>
CLIENT:		Infra	structure Ontario (I	0)						LE	GEND
PROJECT	r:	Preli	iminary Geotechnica	al Investigation						\boxtimes	SS - SPLIT SPOON
LOCATIO	N:	700	Gordon Street, Whi	tby, Ontario							ST - SHELBY TUBE
DESCRIB	ED BY:	P. B	odjona	CHECKED BY:		S. Sha	hangia	an		Ţ	- WATER LEVEL
DATE (ST	ART):	4 Au	igust 2016	DATE (FINISH)	: _	4 Augu	ist 201	16			
Depth	Elevation (m)	Stratigraphy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Feet Metre	\$ 81.00		GROU	ND SURFACE			%			N	10 20 30 40 50 60 70 80 90
	80.24		FILL : CLAYEY SILT, so trace topsoil and c brown, moist, stiff	me sand, trace gravel, rganics, trace rootlets,	M	SS1	17	14	3-5-5-8	10	© 0.30 m - 0
	00.24		NATIVE : SILTY SAND TILL brown, moist, den	, trace clay and gravel, se to very dense	M	SS2	100	12	5-10-22-26	32	
6 <u>-</u> 7 <u>-</u> 2.0			very dense			SS3	91	8	12-23-47-50/ 100mm	70	
8 — 9 —			becoming grey			SS4	100	4	28-48-50/ 100mm	100	○ WL 2.64 m - - 8/16/2016
10 — 3.0 11 — 11 12 — 12			Gravel : 1%, Sand : 10%	: 55%, Silt : 34%, Clay		SS5	100	5	34-46-45-48	91	
13 - 4.0 14 - 4.0					X	SS6	100	3	24-48-50/	100	
16 <u>-</u> 5.0 17 <u>-</u> 18 <u>-</u>									100mm		Bentonite Seal
2 19	74.14					SS7	100	13	28-50/ 125mm	100	
$\begin{array}{c} 23 \\ -23 \\ -24 \\ -25 \\ -25 \\ -26 \\ -1 \\ -27 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$			SILTY CLAY/CLA	YEY SILT TILL, trace rrey, moist to wet, hard	X	SS8	75	21	20-22-30-32	52	
$\begin{array}{c} 29 \\ 30 \\ -1 \\ 31 \\ -1 \\ 32 \\ -1 \\ -1 \\ 32 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$					X	SS9	100	7	24-25-33-32	58	

REFERENCE No.: 076896			ENC	LOSU	RE N	0.:	5							
	BOREHOLE N	o.:		NW0	5D-1(6	F	SOF	۶FF	IOI	FF	RED	ORT	-
GHD	ELEVATION:		81	00.1	m			F	Page:	2	of	2	•	
CLIENT: Infrastructure Ontario (LE							
PROJECT: Preliminary Geotechnic	cal Investigation							<u>92111</u>	2 90	л іт с				
								ST	- SF - SF	IELB'	Y TUBI	4 <u>=</u>		
			S Sha	hongi	<u></u>			RC	- R(
		_	5. 5Ha	nangi			Ţ		- VV	AIER	LEVE	L		
DATE (START): 4 August 2016	_ DATE (FINISH)	-	4 Augu	IST 20	10									
		_		1				Cha		(0)		A 514		
		e	and	Ч е	arte	Blows pe	SCR	Sne	ar test sitivity Water	(Cu) (S)	nt (%)		a)	
L DESC A LIOS atig: Desc	AND BEDROCK	Stat	pe a	2 CI	oisti	15 cm	etra	Щ.	Atterb	erg lim	nits (%)			
с — Ш – В			ĻΖ	Å	ΣO	or RQD	Pel	e (blov	"N" Val ws / 12	ue in30	cm)			
Feet Metres 81.00 GROU	JND SURFACE			%			Ν	10 2	20 30	40 50	60 70	80 90		
										#2 \$	Silica S	and	-	
] [
		M	SS10	100	13	18-31-40-50/	71	0						
37 -		Δ				125mm							-	
											Scr	reen	1 🗐	
39 - 12 0												+	-	
40 - 12.20 68.80 SHALE-BEDROO	K inferred arev	~~	SS11	100	15	50/	100	-0			-12.20	2 m 7	1 II	
						50mm					_12.2;	3 m/	-	
													-	
43 - 13.0 NOTE : End of Borehole :	at 12.23 m bgs due to												-	
44 – auger refusal Borehole was dry	upon completion												_	
45 - 50 mm diameter	monitoring well installed												-	
46 – 14.0 Groundwater leve	el at 1.59 m bgs on												-	
47 – Groundwater leve	el at 2.64 m bgs on												-	
48 – August 16, 2016 bgs denotes 'belo	w ground surface'												-	
													-	
													-	
													-	
													-	
													-	
													-	
56 <u>-</u> 17.0													+	
													-	
58 –													-	
													-	
													-	
									+	+	++		-	
													-	
													_	
										+	++		-	
													1	

H	REFEREN	ICE NO.	:	076896								ENCLOSURE NO.: 5
		ſ	HD		BOREHOLE No).: _		MW0	<u>5S-1</u>	6	E	BOREHOLE REPORT
					ELEVATION:		81	.00 ו	m			Page: <u>1</u> of <u>1</u>
(Infra	structure Ontario (I	D)						<u>LE</u>	GEND
F	PROJECT	:	Prel	iminary Geotechnica	al Investigation						\boxtimes	SS - SPLIT SPOON
L		N:	700	Gordon Street, Whi	tby, Ontario							ST - SHELBY TUBE
[DESCRIBI	ED BY:	P. B	odjona	CHECKED BY:		S. Sha	hangia	an		⊥⊥ Ţ	- WATER LEVEL
[DATE (ST	ART):	4 Aı	igust 2016	DATE (FINISH)	:	4 Augu	st 201	16			
	Depth	Elevation (m)	Stratigraphy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab \bigcirc Water content (%) \square_{w_p, W_i} Atterberg limits (%) \bullet "N" Value (blows / 12 in30 cm)
Fe	et Metres	81.00		GROU	ND SURFACE			%			Ν	10 20 30 40 50 60 70 80 90
1 2		80 24		FILL : CLAYEY SILT, sou trace topsoil and o brown, moist, stiff	me sand, trace gravel, rganics, trace rootlets,	X	SS1	17	14	3-5-5-8	10	• 0.30 m - • • • • • • • • • • • • • • • • • •
3 4 5				NATIVE : SILTY SAND TILL brown, moist, dens	, trace clay and gravel, se to very dense		SS2	100	12	5-10-22-26	32	Bentonite Seal
6	 2.0			very dense		X	SS3	91	8	12-23-47-50/ 100mm	70	
8 9	, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			becoming grey		X	SS4	100	4	28-48-50/ 100mm	100	2.44 m #2 Silica Sand
10 11 12							SS5	100	5	34-46-45-48	91	OHI WL 3.45 m 8/16/2016 Screen
13 14 15 16		76.03				X	SS6	100	3	24-48-50/ 100mm	100	4.57 m
00 MILH GKAPH+MEIT 012898-GEO.GEN INSPEC_SOL.GDT 19/8/16 01 MILH GKAPH+MEIT 02898-GEO.GEN INSPEC_SOL.GDT 19/8/16 02 MILH GKAPH+MEIT 03898-GEO.GEN INSPEC_SOL.GDT 19/8/16 03 MILH GKAPH+MEIT 04898-GEO.GEN INSPEC_SOL.GDT 19/8/16 04 MILH GKAPH+MEIT 04898-GEO.GEN INSPEC_SOL.GDT 19/8/16 05 MILH GKAPH+MEIT 04898-GEN INSPEC_SOL.GDT 19/8/16 05 MILH GKAPH 04898-GEN INSPEC_SOL.GDT 19/8/16 05 MILH GKAPH 04898-GEN INSPEC_SOL.GDT 19/8/16	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	76.03		END OF BOREHO NOTE : End of Borehole a Borehole was dry 50 mm diameter m at 4.57 m bgs Groundwater level August 16, 2016 bgs denotes 'below	DLE: t 4.97 m bgs upon completion nonitoring well installed at 3.45 m bgs on v ground surface'							
32 SOIL	 											

REFERENCE No.: 076	896							ENCLOSURE NO.: 6
	BOREHOLE No).:_		BH0	6-16		В	BOREHOLE REPORT
GHD	ELEVATION:		79	9.31 i	m			Page: <u>1</u> of <u>2</u>
CLIENT: Infrastructur	e Ontario (IO)						LEC	GEND
PROJECT: Preliminary	Geotechnical Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION:700 Gordon	Street, Whitby, Ontario							ST - SHELBY TUBE
DESCRIBED BY: S. Howell	CHECKED BY:		S. Sha	hangia	an		⊥⊔ ▼	- WATER LEVEL
DATE (START): 27 July 201	6 DATE (FINISH):		27 July	2016			-	
	,							
Depth Elevation (m) Stratigraphy	DESCRIPTION OF SOIL AND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	$\begin{array}{l lllllllllllllllllllllllllllllllllll$
Feet Metres 79.31	GROUND SURFACE			%			N	10 20 30 40 50 60 70 80 90
2 - 0.76 78.55 TOPS	CIL with rootlets : 150 mm CLAY, some sand, trace gravel, n moist, stiff		SS1	63	14	2-4-8-10	12	
3 1.0 4 5 sand t	/E : CLAY/CLAYEY SILT TILL, some to sandy, trace gravel, oxidized , slightly plastic, brown, moist, hard	M	SS2	83	10	11-19-23-27	42	
6	sand and gravel, oxidized stains, rown to brown	M	SS3	83	8	9-17-31-44	48	
		X	SS4	63	7	28-43-50/ 100mm	100	
10 3.0 11 Grave 12 : 12%	el : 3%, Sand : 44%, Silt : 41%, Clay	\square	SS5	83	8	18-29-46-50/ 100mm	75	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		X	SS6	42	8	39-50/ 125mm	100	
$ \begin{array}{c} 19 \\ 20 \\ -1 \\ 21 \\ -1 \\ 22 \\ -1 \\ 22 \\ -1 \\ 22 \\ -1 \\ -1 \\ 22 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$		X	SS7	29	6	28-50/ 125mm	100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		X	SS8	50	8	43-50/ 125mm	100	
29 - 9.0 30 - 9.0 31 - 32 - 5		X	SS9	46	12	27-50/ 100mm	100	

LLOG WITH GRAPH+WELL 076896-GEO.GPJ INSPEC SOL.C

REFERENCE NO.:	076896								
GUI		BOREHOLE N).:		BHO	6-16		E	BOREHOLE REPORT
GI	2	ELEVATION:		79	9.31	m			Page: <u>2</u> of <u>2</u>
CLIENT:Inf	rastructure Ontario (I	C)						<u>LEC</u>	GEND
PROJECT: Pro	eliminary Geotechnica	al Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION:70	0 Gordon Street, Whi	tby, Ontario							ST - SHELBY TUBE
DESCRIBED BY: S.	Howell	CHECKED BY:		S. Sha	hangi	an		⊥⊔ Ţ	- WATER LEVEL
DATE (START): 27	July 2016	DATE (FINISH)	: _	27 July	2016	6			
Depth Elevation (m) Stratigraphy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Shear test (Cu) \triangle Field Sensitivity (S) \square Lab \bigcirc Water content (%) \blacksquare_{μ} Atterberg limits (%) \bullet "N" Value (blows / 12 in30 cm)
Feet Metres 79.31	GROU	ND SURFACE			%			N	10 20 30 40 50 60 70 80 90
$ \begin{array}{c} 33 \\ 34 \\ 35 \\ 35 \\ 36 \\ -1 \\ 36 \\ -1 \\ 11.0 \\ 37 \\ -1 \\ 38 \\ -1 \\ 39 \\ -1 \\ 12.0 \\ \end{array} $	trace sand and gra wet	avel, shale fragments,	X	SS10	67	8	24-47-50/ 125mm	100	
	SHALE-BEDROC	K, inferred, grey	\times	SS11	2	3	50/	100	
							75mm		
$\begin{array}{c} 42 \\ 43 \\ 43 \\ 44 \\ 43 \\ 44 \\ 45 \\ 46 \\ 46 \\ 46 \\ 46 \\ 47 \\ 48 \\ 49 \\ 49 \\ 49 \\ 49 \\ 48 \\ 49 \\ 49$	END OF BOREH(NOTE : End of Borehole a inferred bedrock Borehole was dry Borehole backfille the top bgs denotes 'below	DLE: t 12.28 m bgs on upon completion d with cement grout to w ground surface'							

_	REFEREN	CE No.:		076896								ENCLOSURE No.: 7
		G	HD		BOREHOLE No).: _		BH0	7-16		E	OREHOLE REPORT
					ELEVATION: _		80).29	m			Page: <u>1</u> of <u>2</u>
	CLIENT:		Infra	structure Ontario (IC	D)						<u>LE</u>	GEND
	PROJECT	:	Preli	minary Geotechnica	al Investigation						\boxtimes	SS - SPLIT SPOON
	LOCATION	N:	700	Gordon Street, Whit	tby, Ontario							ST - SHELBY TUBE RC - ROCK CORF
	DESCRIBE	ED BY:	S. H	owell	CHECKED BY:		S. Sha	hangi	an		Ţ	- WATER LEVEL
	DATE (ST	ART): _	20 J	uly 2016	DATE (FINISH)	: _	3 Augu	ist 201	16			
ľ												
	Depth	Elevation (m)	Stratigraphy	DESC SOIL AI	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	$ \begin{array}{c c} Shear test (Cu) & \bigtriangleup \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	Feet Metres	80.29		GROUI	ND SURFACE			%			N	10 20 30 40 50 60 70 80 90
	2 0.70	80.19		∑ FOPSOIL with roo FILL : SILTY CLAY, som brown, damp, very	tiets : 100 mm/ e sand and gravel, y stiff		SS1	38	4	3-9-12-16	21	
	3 <u>-</u> 1.0 4 <u>-</u>	79.53		NATIVE : SANDY SILT/SILT clay and gravel, ox moist, very dense	Y SAND TILL, trace kidized stains, brown,	M	SS2	75	5	5-11-42-45	53	0
	5 6 7 2.0			, - ,		X	SS3	38	7	19-50/ 125mm	100	
	8 —					X	SS4	46	5	31-50/ 100mm	100	•
	10 - 3.0 11 - 3.0 11 - 5			grey Gravel : 8%, Sand : 6%; NP Gravel : 1%, Sand : 7%: NP	: 59%, Silt : 27%, Clay : 59%, Silt : 33%, Clay	X	SS5A SS5B	46	6 	40-50/ 125mm	100 	
6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 770, 14		X	SS6	50	5	37-50/ 125mm	100	
PEC_SOL.GDT 19/8/1	20 + 6.0 21 + 22 + 20 22 + 20 22 + 20 23 + 20 20					X	SS7	55	8	18-50/ 125mm	100	
H+WELL 076896-GEO.GPJ INSI	23 - 7.0 24 - 25 - 26 - 8.0 27 - 28 - 28 - 28 - 29						SS8	87	7	26-31-39-45	70	
SOIL LOG WITH GRAPI	29 9.0 30 31 32 					X	SS9	100	13	25-28-43-50/ 50mm	71	

REFERENCE No.: 076896								ENCLOSURE No.: /
	BOREHOLE No	o.:		BH0	7-16		F	
GHD	ELEVATION:		80).29	m			Page: <u>2</u> of <u>2</u>
CLIENT: Infrastructure Ontario	(IO)						LE	GEND
PROJECT: Preliminary Geotech	nical Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION: 700 Gordon Street, V	/hitby, Ontario							ST - SHELBY TUBE
DESCRIBED BY: S. Howell	CHECKED BY:		S. Sha	hangi	an		Ш	RC - ROCK CORE - WATER LEVEL
DATE (START): 20 July 2016	DATE (FINISH)	:	3 Augu	st 20'	16		÷	
	,							
			77.	>	0	Diawana	ΞĤ	Shear test (Cu) △ Field
	SCRIPTION OF	ate	e and nber	N CR	sture	6 in. /	/ SC	Sensitivity (S) Lab
	AND BEDROCK	ŭ	Nur	Zeco T	Noi Co	15 cm or RQD	ene	 w_p w_l W_l W_l W_l W_l
Feet Metres 80.29 GR		+		<u>~</u> %				(blows / 12 in30 cm)
		+		70				
34 —								
			SS10	100	10	32-50/	100	
³⁶ <u>11.0</u>		\square			_	125mm		
37 —								
		\mathbb{N}	SS11	82	13	16-33-47-50/	80	
42 12.75 67.54		μ				100mm		
43 - 13.0 END OF BORE	HOLE:							
	- + 40 75 m h m							
45 – End of Borehol	e at 12.75 m bgs ned dry upon completion							
46 – 14.0 Borehole backt	lied with grout up to							
47 – bgs denotes bg	elow ground surface' n-plastic'							
49 — 15.0								
52								
56 – 17.0								
8 59 - 18.0								

REFERENCE No.: 076	6896							ENCLOSURE No.: 8
CUD	BOREHOLE No).: _		BH0	8-16		Е	OREHOLE REPORT
GHD	ELEVATION:		81	.00 ו	m			Page: <u>1</u> of <u>2</u>
CLIENT: Infrastructu	ure Ontario (IO)						<u>LE</u>	GEND
PROJECT: Preliminary	y Geotechnical Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION: 700 Gordo	on Street, Whitby, Ontario							ST - SHELBY TUBE
DESCRIBED BY: S. Howell	CHECKED BY:		S. Sha	hangia	an		LLL ▼	- WATER LEVEL
DATE (START):26 July 20	16 DATE (FINISH):	:	26 July	2016				
Depth Elevation (m) Stratigraphy	DESCRIPTION OF SOIL AND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Feet Metres 81.00	GROUND SURFACE			%			N	10 20 30 40 50 60 70 80 90
2 - 0.76 80.24 - 0.76 80.24	SOIL with rootlets : 100 mm : Y CLAY, some sand, trace gravel, /n, moist, stiff		SS1	67	14	2-3-6-7	9	
3 1.0 4 SILT 5 NATI	IVE : Y SAND/SANDY SILT TILL, trace to e clay and gravel, brown, damp to t, compact to dense	X	SS2	50	7	5-8-11-23	19	
		Д	SS3	92	7	8-19-30-50/ 100mm	49	
8 - 2.29 /8./1 • • • very 9	dense	X	SS4	88	5	23-31-50/ 125mm	100	
		X	SS5	75	5	16-29-50/ 125mm	100	
13 4.0 14	er grinding							
15	p /el : 14%, Sand : 57%, Silt : 23%, : 6%; NP	X	SS6	75	2	28-44-50/ 125mm	100	
20 - 0.0 21	, moist-wet		SS7	42	5	30-46-50/ 100mm	100	
$ \begin{array}{c} 23 \\ 24 \\ 25 \\ 26 \\ 26 \\ 27 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28$		X	SS8	50	8	28-40-50/ 125mm	100	
$ \begin{array}{c} 29 \\ 30 \\ 30 \\ 31 \\ 31 \\ 32 \\ 4 \end{array} $		X	SS9	38	8	25-38-50/ 125mm	100	

REFERENCE No.:	076896								ENCLOSU	RE NO.:		8
		BOREHOLE N	.:		BH0	8-16		B	SORFH		RFF	PORT
GF		ELEVATION:		81	.00	m			Page:	<u>2</u> 0	of <u>2</u>	UNI
CLIENT: I	nfrastructure Ontario (I)							LEC				
	Preliminary Geotechnics											
	700 Cordon Street Whi								SS - SP ST - SH	ELBY TU	JBE	
				C Cha	hongi				RC - RC	CK COF	E	
				<u>5. 511a</u>	nangi			Ţ	- VV <i>F</i>	IER LE	VEL	
DATE (START): _2	26 JULY 2016	DATE (FINISH)	-	26 July	2016)						
									Shoar tost (^ Ei	ald
- th			e	and ber	ery F	ure ent	Blows pe	SCF	Sensitivity (S)	□ La	ab
Dep (m)	SOIL A	ND BEDROCK	Stat	/pe	SCO TC	loist Conte	15 cm	netr ex /	M _p W _I Atterbe	erg limits (%)	
5	5			É'Z	Ř	20	or RQD	In de	 "N" Valu (blows / 12) 	in30 cm)	
Feet Metres 81.00	GROU	ND SURFACE			%			N	10 20 30 4	0 50 60	70 80 90)]
												\neg
			А	SS10	75	18	26-45-50/ 100mm	100				_ •
37 —												_
38 —												
39 - 12 0												_
40												_
41 —			Д	SS11	71	10	31-44-50/ 100mm	100				_ •
42												_
	SHALE-BEDROCI	C. inferred. arev										_
44 –		, , . ,		CR12								
45												_
46 — 14.0	END OF BOREHO	<u>DLE</u> :										
47	NOTE :											-
	End of Borehole a inferred bedrock	: 13.85 m bgs on										_
⁴⁹ — 15.0	Borehole was dry Borehole backfilled	upon completion										
	the top bas denotes 'below	v ground surface'										
9 52 <u> </u>	NP denotes 'non-p	lastic'										_
$\begin{bmatrix} 62 \\ - \\ - \\ 53 \\ - \end{bmatrix}$ 16.0												_
109 54 —												\neg
56 17.0												_
												\neg
58												
§ 59 – 18.0												_
											+	_
												\neg
											\square	\neg

_	REFEREN	ICE NO.	:	076896								ENGLOSURE NO.: 9
					BOREHOLE N	o.:		BH0	9-16		F	SOREHOLE REPORT
			iHD		ELEVATION:		81	.94	m		_	Page: <u>1</u> of <u>2</u>
	CLIENT:		Infras	structure Ontario (IC))						LE	GEND
	PROJECT	:	Prelir	minary Geotechnica	Investigation						\boxtimes	SS - SPLIT SPOON
	LOCATIO	N:	700 (Gordon Street, Whit	oy, Ontario							ST - SHELBY TUBE
	DESCRIB	ED BY:	S. Ho	owell	CHECKED BY:		S. Sha	hangi	an		LLI ▼	- WATER LEVEL
	DATE (ST	ART):	19 Ju	ıly 2016	DATE (FINISH)	:	19 July	2016	;		-	
_		, <u>-</u>		•	· · · · · · · · · · · · · · · · · · ·							
	Depth	Elevation (m)	Stratigraphy	DESCF SOIL AN	RIPTION OF ID BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Feet Metres	81.94		GROUN	ID SURFACE			%			N	10 20 30 40 50 60 70 80 90
	0.10 1 2 2	81.84		TOPSOIL with root FILL : SILTY CLAY, trace oxidized stain, grey stiff	lets : 100 mm sand and gravel, r, moist, firm to stiff		SS1	92	10	2-2-4-6	6	
	$3 \rightarrow 1.0$ $4 \rightarrow 1.52$ $5 \rightarrow 1.52$	80.42				X	SS2	100	17	3-5-9-24	14	
	6 – 7 – 2.0			NATIVE : SILTY SAND TILL, gravel, oxidized sta dense	some clay, trace ins, brown, moist,	X	SS3	92	6	16-20-25-32	45	
	8 9			Gravel : 7%, Sand : 13%	: 50%, Silt : 30%, Clay		SS4A SS4B	100	5 14	14-21-26-41	47 	
	10 3.0			very dense		X	SS5	50	7	24-43-50/ 125mm	100	
- - - - -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77.82		SILTY CLAY/CLAY sand to sandy, occ. moist to wet, hard Gravel : 3%, Sand : 13%	EY SILT TILL, some asional gravel, grey, : 46%, Silt : 38%, Clay	_	SS6	83	15	27-39-50/ 125mm	100	+D
EC_SOL.GUI 19/8/1	20 + 6.0 21 + 6.0 22 +					X	SS7	75	7	30-46-50/ 100mm	100	
	23 - 7.0 24 - 1 25 - 1 26 - 8.0 27 - 1 28 - 1					X	SS8	79	7	28-40-50/ 125mm	100	
	29 30 31 32 			Gravel : 0%, Sand : 11%	: 47%, Silt : 42%, Clay	X	SS9	67	10	25-38-50/ 125mm	100	

REFERENCE No.:	076896								ENCLOSURE NO.: 9
		BOREHOLE N	o.:		BH0	9-16		F	BORFHOLE REPORT
GHD		ELEVATION:		81	.94	m			Page: <u>2</u> of <u>2</u>
CLIENT: Infr	astructure Ontario (IC))						<u>LE</u>	GEND
PROJECT: Pre	liminary Geotechnica	I Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION: 700) Gordon Street, Whit	by, Ontario							ST - SHELBY TUBE
DESCRIBED BY S. H	Howell	CHECKED BY		S Sha	hangi	an			
	July 2016		. —	10 101	2016			<u> </u>	
DATE (START)		DATE (FINISH)		19 July	2010)			
	1							1	
Depth Elevation (m) Stratigraphy	DESCI SOIL AN	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab \bigcirc Water content (%) W_{p} W _i Atterberg limits (%) \bullet "N" Value (blows / 12 in30 cm)
Feet Metres 81.94	GROUN	ID SURFACE			%			N	10 20 30 40 50 60 70 80 90
35 —									
36 - 11.0			М	SS10	92	10	31-40-50/ 125mm	100	•
37 —									
38 –									
39 - 12 0									
40 - 12.0	trace gravel								
			X	SS11	88	20	26-39-50/ 125mm	100	
42 —									
	AUGERED to 13.1	1 m bas	-						
44 —	encountered gased	ous substance with							
45	odour								
46 — 14.0	END OF BOREHO	<u>LE</u> :							
47	NOTE : End of Borebole at	13 11 m bas							
48	Borehole remained	open and dry upon							
49 - 15.0	bgs denotes 'below	ground surface'							
50 —									
51 —									
54 –									
55 –									
56 17.0									
g 57 <u>-</u>									
58 –									
§ 59 - 18.0									
⁸ 61 −									
× • · · · · · · · · · · · · · · · · · ·	1								

EXPENDIC No.: MW10D-16 ELEVATION: BOREHOLE No.: MW10D-16 BLEVATION: BOREHOLE No.: CLIENT: Infrastructure Ontario (IO) ELEVATION: 81.98 m ELEVATION: 81.98 m CLIENT: Infrastructure Ontario (IO) ELEVATION: 81.98 m ELEVATION: 81.98 m LOCATION: 700 Gordon Street, Whitby, Ontario	
ELEVATION: 81.98 m CLIENT: Infrastructure Ontario (IO) LEG PROJECT: Preliminary Geotechnical Investigation S LOCATION: 700 Gordon Street, Whitby, Ontario S DESCRIBED BY: S. Howell CHECKED BY: S. Shahangian V DATE (START): 12 August 2016 DATE (FINISH): 12 August 2016 Top One Or or RQD Blows perfection S Eeet Metres 81.98 GROUND SURFACE % N Top SS1 79 10 3-6-7.7 13 TopSolL with rootlets: 100 mm SS1 79 10 3-6-7.7 13 TopSolL with rootlets: 100 mm SS1 79 10 3-6-7.7 13 TopSolL with rootlets: SUTY CLAY/CLAY some sand, trace gravel, motil ed brown and grey, moist, stiff to very stiff SS3 88 8 7-8-17.30 25 Sol of a -2.20 79.69 SS1 79.10 3-6-7.7 13 3 Sol -1.52 80.46 10 <td>OREHOLE REPORT</td>	OREHOLE REPORT
CLIENT: Infrastructure Ontario (IO) LEG PROJECT: Preliminary Geotechnical Investigation S LOCATION: 700 Gordon Street, Whitby, Ontario S DESCRIBED BY: S. Howell CHECKED BY: S. Shahangian T DATE (START): 12 August 2016 DATE (FINISH): 12 August 2016 16 in. / Image: Solid AND BEDROCK Image: Solid AND BEDROCK Image: Solid AND BEDROCK Image: Solid AND BEDROCK SS SS N Image: Solid AND BEDROCK N Image: Solid AND SURFACE % N N N N Image: Solid AND SURFACE % N N N N Image: Solid AND SURFACE % N N SS1 79 10 3-6-7.7 13 Image: Solid AND SURFACE % N N SS2 83 14 5-8-11-15 19 Image: Solid AND SURFACE	Page: <u>1</u> of <u>2</u>
PROJECT: Preliminary Geotechnical Investigation Image: State of the state	END
LOCATION:	SS - SPLIT SPOON
DESCRIBED BY: S. Howell CHECKED BY: S. Shahangian DATE (START): 12 August 2016 DATE (FINISH): 12 August 2016 Image: Constraint of the state s	GT - SHELBY TUBE
DATE (START): 12 August 2016 DATE (FINISH): 12 August 2016 End	- WATER LEVEL
End End <td></td>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Feet Metres 81.98 GROUND SURFACE % N 1 0.10 81.88 TOPSOIL with rootlets : 100 mm SS1 79 10 3-6-7-7 13 2 - SILTY CLAY, some sand, trace gravel, motiled brown and grey, moist, stiff to very stiff SS2 83 14 5-8-11-15 19 4 - - SANDY SILT TILL, some gravel, trace clay, oxidized stains, grey, moist, very dense SS3 88 8 7-8-17-30 25 7 - 2.0 79.69 SILTY CLAY/CLAYEY SILT TILL, some gravel, trace clay, oxidized stains, grey, moist, very dense SS4 25 3 50/ 100 25 8 - - SILTY CLAY/CLAYEY SILT TILL, some sand, trace gravel, limestone fragments, brown, moist, hard SS5 25 5 50 50 100 125mm 10 -	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab \bigcirc Water content (%) $\bigvee_{P_p} W_l$ Atterberg limits (%) \bigcirc "N" Value (blows / 12 in30 cm)
1 - 0.10 81.88 10PSOLE With Poolets : 100 mm SS1 79 10 3-6-7-7 13 2 - SILTY CLAY, some sand, trace gravel, mottled brown and grey, moist, stiff to very stiff SS2 83 14 5-8-11-15 19 4 - - SANDY SILT TILL, some gravel, trace clay, oxidized stains, grey, moist, very dense SS3 88 8 7-8-17-30 25 7 - 2.0 - SILTY CLAY/CLAYEY SILT TILL, some gravel, trace clay, oxidized stains, grey, moist, very dense SS3 88 8 7-8-17-30 25 7 - 2.0 - - SILTY CLAY/CLAYEY SILT TILL, some gravel, trace clay, oxidized stains, grey, moist, very dense SS4 25 3 50/ 100 10 9 - - - - - - - 55 50 50 100 11 -<	10 20 30 40 50 60 70 80 90
3 1.0 4 1.10 5 1.52 80.46 NATIVE : SANDY SILT TILL, some gravel, trace clay, oxidized stains, grey, moist, very dense SS3 88 8 7-8-17-30 25 7 2.0 79.69 SILTY CLAY/CLAYEY SILT TILL, some sand, trace gravel, limestone fragments, brown, moist, hard SS4 25 3 50/ 125mm 100 9 10 3.0 SS5 25 5 50 50 11 12 13 4.0 4.	
6 2.0 7 2.0 8 2.29 9 3.0 10 3.0 11 12 13 4.0 14 4.0	
8 2.29 79.69 SILTY CLAY/CLAYEY SILT TILL, some sand, trace gravel, limestone fragments, brown, moist, hard SS4 25 3 50/ 125mm 100 C 9 10 3.0 SS5 25 5 50 50 10 11 12 SS5 25 5 50 50 50 50 11 12 13 4.0 14 14 14 14 14 14 15 10 <t< td=""><td></td></t<>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} 12 \\ 13 \\ - \\ 14 \\ - \\$	
15 SS6 21 9 50/ 100 16 5.0 125mm 125mm 125mm 17 18 1 1 1	WL 4.12 m 8/16/2016 Bentonite Seal
$\begin{bmatrix} 19 & - & - & - & - & - & - & - & - & - & $	
24 25 5 25 8.0 27 8.0 28 8.0	
29 8.69 73.29 SANDY SILT TILL, some clay, trace gravel, grey, wet, very dense 30 9.0 31 50/ 31 32 100 7 50/ 32 100 7 50/ 100	0 9.60 m #2 Silica Sand

REFERENCE No.: 07689	96							ENCLOSURE No.: 10
	BOREHOLE NO	o.:		MW1	0D-1	6	E	BOREHOLE REPORT
GHD	ELEVATION:		81	.98	m		_	Page: <u>2</u> of <u>2</u>
CLIENT: Infrastructure	Ontario (IO)						LE	GEND
PROJECT: Preliminary G	eotechnical Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION: 700 Gordon S	Street, Whitby, Ontario							ST - SHELBY TUBE
DESCRIBED BY: S. Howell	CHECKED BY:		S. Sha	hangi	an		⊥⊔ ▼	- WATER LEVEL
DATE (START): 12 August 20	16 DATE (FINISH)): _	12 Aug	ust 2	016			
n yho			b r	Z	يد و	Blows pe	E C Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo	Shear test (Cu) △ Field Sensitivity (S) □ Lab
epth (m) tigrap	DESCRIPTION OF	tate	e ar mbe	S S R S R	istur	6 in. /	etrat	O Water content (%)
Strai C	SOIL AND BEDROOK	S	T _y n Nu	Rec	≗ပိ	or RQD	one)	"N" Value (blows / 12 in 30 cm)
Feet Metres 81.98	GROUND SURFACE			%			N	10 20 30 40 50 60 70 80 90
33								
		₹	SS10A	100	16 14	18-31-40-50/	71	Streen
						125mm		
37 - 11.43 70.55	LLY CLAY, some sand, trace to	_						
some si	lt, grey, wet, hard							
		M	SS11	100	7	25-39-44-50/	83	
42 - 12.72 69.26		+				75mm		12.72 m—
43 - 13.0 END OI	F BOREHOLE:							
44 – NOTE :	Rorehole at 12 72 m has							
45 – Borehol	le dry upon completion							
46 – 14.0 at 11.59) m bgs							
47 — August	16, 2016							
	notes 'below ground surface'							
49 15.0								
$\begin{bmatrix} 52 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\$								
56 17.0								
58								
62 - 19.0								

-	REFEREN	ICE No.	:	076896								ENCLOSURE No.: 10
		G	HD		BOREHOLE No).: _		MW1	0S-16	<u>}</u>	E	BOREHOLE REPORT
					ELEVATION: _		82	2.00	m			Page: <u>1</u> of <u>2</u>
	CLIENT:		Infra	structure Ontario (I	D)						LE	GEND
	PROJECT	:	Preli	minary Geotechnica	al Investigation						\square	SS - SPLIT SPOON
	LOCATIO	N:	700	Gordon Street, Whi	tby, Ontario							ST - SHELBY TUBE RC - ROCK CORE
	DESCRIB	ED BY:	S. H	owell	CHECKED BY:		S. Sha	hangi	an		Ţ	- WATER LEVEL
	DATE (ST	ART):	12 A	ugust 2016	DATE (FINISH)	:	12 Aug	just 20	016			
	Depth	Elevation (m)	Stratigraphy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) H Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)
	Feet Metres	82.00		GROU	ND SURFACE			%			Ν	
	1	81.90		FILL : SILTY CLAY, som mottled brown and voru stiff	e sand, trace gravel, l grey, moist, stiff to		SS1	79		3-6-7-7	13	• 0.30 m - • • • • • • • • • • • • • • • • • •
	$\begin{array}{c} 3 & \\ 4 & \\ 5 & \end{array}$ 1.0	80.48				X	SS2	83		5-8-11-15	19	
	6 – 7 – 2.0			SANDY SILT TILL clay, oxidized stain compact	, some gravel, trace ns, grey, moist,	X	SS3	88		7-8-17-30	25	
	8 9	79.71		SILTY CLAY/CLA sand, trace gravel brown, moist, harc	YEY SILT TILL, some limestone fragments,	×	SS4	25		50/ 125mm	100	
	10 3.0 11 12					\boxtimes	SS5	25		50	50	Bentonite Seal
	13 <u>-</u> 4.0 14 <u>-</u> 15 <u>-</u>					X	SS6	21		50/	100	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									125mm		
GDT 19/8/16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			becoming grey			SS7	83		25-38-50/ 125mm	100	5.69 m WL 5.84 m − − − − − − − − − − − − −
SPJ INSPEC_SO	22 – 23 – 7.0 24 –											
L 076896-GEO.C	25 26 8.0 27 8.23	73.77					SS8	100		29-39-44-50	83	7.62 m
SOIL LOG WITH GRAPH+WELL	28 29 30 31 32 			END OF BOREHO NOTE : End of Borehole a Borehole dry upor 50 mm diameter n at 7.62 m bgs Groundwater level August 16, 2016	DLE: t 8.23 m bgs completion nonitoring well installed at 5.84 m bgs on							

REFERENCE No.: 076896							_		1							_		
				BOREHOLE N	lo.:		MW1	0S-16	6	F	N	R	ΞН		F	RF		т∣
	G	HD)	ELEVATION:		82	2.00 ו	m				Pag	ge:	2	of	_2		•
CLIENT:		Infra	Istructure Ontario (IC	D)						LE	GE	ND						
PROJECT:		Preli	iminary Geotechnica	al Investigation							SS		- SPI	IT S	POO	N		
LOCATION		700	Gordon Street, Whit	bv. Ontario							ST	-	- SHE	ELBY	' TUE	BE		
DESCRIBE		S H	owell	CHECKED B)	<i>.</i>	S. Sha	hangi	an			RC	-	RO	CK C		=1		
		<u>12</u> Δ	ugust 2016		·	12 Διιο		16		-		-	- ••7			_L		
B/(IE (01)	u (1)	127			·)· _	127109	1001 20											
	ц	hy				pc _s	<u>></u>	r e	Blows p	er e	Sł Se	hear t ensiti	test (0 vity (5	Cu) S)		∆F	ield ab	
Jepth	evatio (m)	tigral	DESC	RIPTION OF	tate	imbe	Sove TCR	istur	6 in. /	etrat S</td <td>Ļ</td> <td>Wa ∎ Att</td> <td>ater c terber</td> <td>onten g limi</td> <td>it (%) its (%</td> <td>)</td> <td></td> <td></td>	Ļ	Wa ∎ Att	ater c terber	onten g limi	it (%) its (%)		
	Ш	Stra		D DEDITOOR	S	d Nu Nu	Rec.	ĕõ	or RQE) de) ((h	"N'	" Value / 12 i	e n -30	cm)			
Feet Metres	82.00		GROUI	ND SURFACE			%			 N	10	0 20	30 40	0 50	60 70	80 90)	
33			bgs denotes 'below	v ground surface'														
34 —																		
35 —																		
36 11.0																		
													+		+		_	
³⁹ – 12.0																		
40																		
42 —																		
43 13.0														-	+			
44 —																		
45 —																		
46 - 14.0														_			_	
47 —																		
48 —													+		+		_	
49 15.0														_				
50																		
51													+	-	+			
$\begin{bmatrix} 52 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $															\square		1	
54											$\left \right $			+	+	+	_	
56 17.0																	1	
													\square		\square		7	
59 - 18 0																		
														+	+		_	
61 —															$\downarrow \downarrow$		1	
62 - 10 0											⊢							
														_			_	
64 —																		
65																		

REFERE	NCE No.	:	076896								ENCLOSURE NO.: 11
				BOREHOLE No) .:_		BH1	1-16		F	BOREHOLE REPORT
	G	iHD		ELEVATION:		81	.61	m			Page: <u>1</u> of <u>2</u>
CLIENT:		Infra	structure Ontario (IC))					I	LE	GEND
PROJEC	Т:	Prel	iminary Geotechnica	al Investigation						\boxtimes	SS - SPLIT SPOON
LOCATIO	N:	700	Gordon Street, Whit	tby, Ontario							ST - SHELBY TUBE
DESCRIE	BED BY:	P. B	odjona	CHECKED BY:		S. Sha	hangi	an		UU ▼	- WATER LEVEL
DATE (S	FART):	4 Au	igust 2016	DATE (FINISH)		4 Augu	st 20'	16		_	
Depth	Elevation (m)	Stratigraphy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	$\begin{array}{l lllllllllllllllllllllllllllllllllll$
Feet Metre	s 81.61		GROUI	ND SURFACE			%			N	10 20 30 40 50 60 70 80 90
	80.85		FILL : SANDY SILT, trac and organics, trace moist, compact	e clay, trace topsoil e rootlets, brown,	M	SS1	33		4-6-10-10	16	
	80.09		NATIVE : SILTY CLAY/CLAY sand and gravel, b	YEY SILT TILL, trace rown, moist, hard	M	SS2	50	16	8-13-30-41	43	
6 – 1.5 <i>.</i> 6 – 2.0 7 – 2.0			SILTY SAND/SAN some clay and gra dense	DY SILT TILL, trace to vel, brown, moist, very	M	SS3	100	8	10-23-38-50/ 125mm	61	
						SS4	100	5	26-50/ 125mm	100	
10 3.0			Gravel : 4%, Sand : 12%	: 53%, Silt : 31%, Clay		SS5	100	6	22-31-36-50/ 125mm	67	
13 4.0 14 15 16 17 18 18					X	SS6	100	5	38-50/ 125mm	100	
$\begin{array}{c} 19 \\ 20 \\ -1 \\ 20 \\ -1 \\ 21 \\ -1 \\ -1 \\ 22 \\ -1 \\ -1 \\ -1$					X	SS7	100	11	27-50/ 100mm	100	
23 - 7.0 24 - 1.0 25 - 1.0 26 - 1.0 26 - 1.0 27 - 1.0 28 -					X	SS8	100	8	45-50/ 125mm	100	
					X	SS9	100	19	43-50/ 125mm	100	

	070030									L030		NU		11	
	BOR	EHOLE No.	.:_		BH1	1-16		P	N	RE	нΟ	IF	RF	PO	RT
GHD	ELE			81	.61 ו	m		L		Page	: _2		f_2	-	
CLIENT: Infras	structure Ontario (IO)							LEC	GEN	D					
PROJECT: Prelir	ninary Geotechnical Investiga	ation						\boxtimes	SS	- S	PLIT	SPOO	DN		
LOCATION: 700 C	Gordon Street, Whitby, Ontari	io							ST	- S	HELE	BY TU	BE -		
DESCRIBED BY: P. Bo	odjona Cł	HECKED BY:		S. Shal	nangia	an		∐ ▼	RC	- R - V	OCK VATE	COR RIF\	E /FI		
DATE (START). 4 Aug		ATE (FINISH):		4 Αυσυ	st 201	16		÷							
Depth Elevation (m) Stratigraphy	DESCRIPTION SOIL AND BEDI	I OF ROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	She Ser ○ w _p w	ear tes isitivity Wate Atter "N" V ws / 1	et (Cu) y (S) er cont berg li alue 2 in3	tent (% imits (% 30 cm)	△ F □ L) 6)	Field .ab	
Feet Metres 81.61	GROUND SURF	ACE			%			N	10	20 30	40 5	0 60 7	0 80 9	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SILTY CLAY/CLAYEY SILT sand and gravel, grey, wet, r END OF BOREHOLE: NOTE : End of Borehole at 12.33 m I Borehole was dry upon com Borehole backfilled with grou bgs denotes 'below ground s	bgs pletion ut to the top surface'	×	SS10 SS11	100	13	28-29-39-46 50/ 125mm	68							

REFERENCE No.:	076896							ENCLOSURE No.: 12
BOREHOLE No.: MW12D-16					6	F		
GHD	ELEVATION	N:	80).73	m			Page: 1 of 2
								<u>GEND</u>
PROJECT: Prelim	ninary Geotechnical Investigation							SS - SPLIT SPOON ST - SHELBY TUBE
LOCATION:700 G	Sordon Street, Whitby, Ontario							RC - ROCK CORE
DESCRIBED BY: <u>S. Ho</u>	well CHECKED	BY:	S. Sha	hangi	an		Ţ	- WATER LEVEL
DATE (START): 25 Ju	l <u>y 2016</u> DATE (FIN	ISH):	25 July	2016	6			
pth ation	DESCRIPTION OF	ite	and Iber	very CR	ture tent	Blows pe 6 in. /	ration SCR	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%)
Elev De Cratiç	SOIL AND BEDROCK	Sta	Type Num	Reco T(Mois Con	15 cm or RQD	Penet	 M⁺ Atterberg limits (%) N⁺ Value (blows / 12 in30 cm)
Feet Metres 80.73	GROUND SURFACE			%			N	10 20 30 40 50 60 70 80 90
0.10 80.63	TOPSOIL with rootlets : 100 mm	_/\	001	20	6	3_6_8_10	14	0.15 m
	SILTY CLAY, some sand and gravel,	. И	331	20	0	5-0-8-10	14	
0.76 79.97	stiff to very stiff	oist,						
	NATIVE : SILTY SAND/SANDY SILT TILL trac		SS2	60	10	5-9-14-31	23	
	clay and gravel, limestone fragments,	, [
	brown, moist, compact to very dense	N	SS3	50	7	9-24-38-50/	62	
7 2.0		\square				125mm		
8	oxidized stains		SS4	50	6	36-50/	100	
9 —						125mm		
10 - 3.0			995	40	1	50	100	
				-10	-			₩L 3.25 m 8/16/2016
12 —								
13 - 4.0								Dontonito Soci
14								
15			556	50	5	36-50/	100	
		\square		00		125mm		
17 —								
		X	SS7A	46	8	27-50/	100	
			55/B		9	125mm		
			SS8	25	8	28-50/	100	
						125mm		8.08 m -
								#2 Silica Sand
		X	SS9A	100	8	3-10-17-39	27	
9.60 71.13 9 .60	SILTY CLAY/CLAYEY SILT TILL, sor	ne 🗵	SS9B		12			
	sand, trace gravel, grey, wet, very stif	tf to						

REFERENCE No.: 076896											ENCLOS	SURE N	lo.:	12	<u></u>
				BOREHOLE N	o.:		NW1	2D-1	6	E	BORE	ЕНО		۶EP	ORT
	6	HD		ELEVATION: _		80).73	m			Pag	e: _2	of	2	••••
CLIENT:		Infra	structure Ontario (IC	D)						<u>LE</u>	<u>GEND</u>				
PROJECT:	:	Preli	iminary Geotechnica	al Investigation						\boxtimes	SS -	SPLIT	SPOON	1	
LOCATION	N:	700	Gordon Street, Whit	tby, Ontario							ST -	SHELB		E	
DESCRIBE	ED BY:	<u>S. H</u>	owell	CHECKED BY:		S. Sha	hangi	an		⊥⊥ Ţ	-	WATE	R LEVE	L	
DATE (STA	ART):	25 J	uly 2016	DATE (FINISH)): _	25 July	2016	6							
Depth	Elevation (m)	Stratigraphy	DESC SOIL AI	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Shear to Sensitiv O Wa W _p W ₁ Atto • "N" (blows /	est (Cu) rity (S) ter conte erberg lir Value 12 in3	ent (%) nits (%) 0 cm)	∆ Fiel □ Lab	t
Feet Metres	80.73	akuna	GROUI	ND SURFACE			%			N	10 20 3	30 40 50	60 70	80 90	1 00 - 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.10		hard hard hard Gravel : 2%, Sand : 19% END OF BOREHC NOTE : End of Borehole at Borehole was dry to 50 mm diameter m at 10.21 m bgs Groundwater level August 12, 2016 Groundwater level August 16, 2016 bgs denotes 'below	: 24%, Silt : 55%, Clay DLE: t 12.63 m bgs upon completion nonitoring well installed at 3.10 m bgs on at 3.25 m bgs on w ground surface'		SS10 SS11	95	14	16-22-37-50 21-42-50/ 125mm	59			10.2 10.3 10.3 10.3 10.3 12.63 12.63 12.63 12.63 12.63 12.63 12.63 12.63 12.63 10.5 10.5 10.5 10.5 10.5 10.5 10.	3 m =	
60															

	REFEREN	ICE No.	:	076896								ENCLOSURE No.: 12			
		G			BOREHOLE No).:		MW1	2S-1(6	E	BOREHOLE REPORT			
					ELEVATION:		8(0.66	m			Page: <u>1</u> of <u>1</u>			
	CLIENT:		Infra	structure Ontario (IC	D)						<u>LE</u>	GEND			
	PROJECT	:	Preli	iminary Geotechnica	I Investigation						SS - SPLIT SPOON				
	LOCATION	N:	700	Gordon Street, Whit	by, Ontario							ST - SHELBY TUBE			
	DESCRIBI	ED BY:	S. H	owell	CHECKED BY:		S. Sha	hangi	an			- WATER LEVEL			
	DATE (ST	ART):	22 J	uly 2016	DATE (FINISH)		22 July	/ 2016	6		-				
	Depth	Elevation (m)	Stratigraphy	DESC SOIL AI	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) W _p M, Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)			
	Feet Metres	80.66		GROUI	ND SURFACE			%			Ν	10 20 30 40 50 60 70 80 90			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80.56 79.90		TOPSOIL with roo FILL : SILTY CLAY, som slightly plastic, bro ∖and grev. moist. st	tlets : 100 mm e sand and gravel, wn to mottled brown iff/		SS1	20	6	3-6-8-10	14	0.15 m m			
	3 1.0 4 5			NATIVE : SILTY SAND/SAN clay and gravel, ox moist, compact to	DY SILT TILL, trace idized stains, brown, very dense		SS2	60	10	5-9-14-31	23	Bentonite Seal			
	6 2.0 7			limestone fragmen	ts, hard	X	SS3	50	7	9-24-38-50/ 125mm	62				
	8 9					X	SS4	50	6	36-50/ 125mm	100	2.60 m			
	10 3.0 11					X	SS5	40	4	50	100	WL 3.38 m 0 WL 3.38 m			
	12 13 4.0 14 15 16 4.85	75.81				X	SS6	50	5	36-50/ 125mm	100	8/16/2016 Screen 0 0 4.63 m			
SOIL LOG WITH GRAPH+WELL 076896-GEO.GPJ INSPEC_SOL.GDT 19/8/16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.01		END OF BOREHO NOTE : End of Borehole at auger refusal Groundwater level bgs upon completi 50 mm diameter m at 4.66 m bgs Groundwater level August 12, 2016 Groundwater level August 16, 2016 bgs denotes 'below	PLE: 4.85 m bgs due to measured at 4.11 m on ionitoring well installed at 3.47 m bgs on at 3.38 m bgs on v ground surface'					125mm					

REFERENCE No.: 076896								ENCLOSURE No.: 13
	BOREHOLE No) .:_		BH1	3-16		B	
GHD	ELEVATION:		82	2.27	m		_	Page: <u>1</u> of <u>2</u>
CLIENT: Infrastructure Ontari	o (IO)						LEC	GEND
PROJECT: Preliminary Geotech	nical Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION:700 Gordon Street,	Whitby, Ontario							ST - SHELBY TUBE
DESCRIBED BY: S. Howell	CHECKED BY:		S. Sha	hangi	an		⊥⊥ ▼	- WATER LEVEL
DATE (START): 20 July 2016	DATE (FINISH)		20 July	2016	;		-	
	,							
Depth IOS Stratigraphy BIO	SCRIPTION OF L AND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Feet Metres 82.27 GR	OUND SURFACE			%			N	10 20 30 40 50 60 70 80 90
1 - 0.10 82.17 TOPSOIL with FILL : SILTY CLAY, socialized stain, oxidized stain,	rootlets : 100 mm some sand and gravel, brown, moist, stiff to very		SS-1	33	10	4-6-7-13	13	
$\begin{bmatrix} 3 & - \\ - & - \\ 4 & - \\ 5 & - \end{bmatrix}$			SS-2	63	33	6-10-13-19	23	
6		\mathbb{N}	SS-3	58	9	3-4-9-31	13	
8 - 2.29 79.98 NATIVE : SILTY CLAY/C 9 - 1 brown, damp t	CLAYEY SILT TILL, sandy, gravel, oxidized stains, o moist, hard	X	SS-4	54	3	19-50/ 125mm	100	
10 - 3.0 11 - Gravel : 10%, 12 - Clay : 11%	Sand : 44%, Silt : 44%,	\boxtimes	SS-5	58		50/ 125mm	100	
13 - 3.81 14 - 4.0 14 - 4.0	some clay, trace gravel, /ery dense							
15	and : 53%, Silt : 32%, Clay		SS-6	58	6	31-50/ 100mm	100	OH • • • • • • • • • • • • • • • • • • •
		X	SS-7	33	7	38-50/ 125mm	100	O ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
$\begin{bmatrix} 2 \\ 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $								
22 – 7.0 SAND and GR	AVEL, some silt, trace st to wet, very dense							
24 Gravel : 40%, 25 Clay : 3% 25 26	Sand : 43%, Silt : 14%,		SS-8	42	7	32-50/ 125mm	100	
			55-0	42	7	38-50/	100	
			00-9	72		125mm		
5 T I Maria								

REFERENCE No.: 076896											ENC	LOSI	JRE N	10.: _		13
				BOREHOLE No).: _		BH1	3-16		B	N	۶F	нΟ	IF	RFF	PORT
	C	iHD		ELEVATION:		82	2.27	m				Page	: _2	of	<u>2</u>	UNI
CLIENT:		Infra	structure Ontario (IC))						LEC	GEN	D				
PROJECT	:	Preli	iminary Geotechnica	I Investigation						\boxtimes	SS	- S	PLIT	SPOC	N	
LOCATION	N:	700	Gordon Street, Whit	by, Ontario							ST	- S	HELE	BY TU	BE -	
DESCRIBE	ED BY:	S. H	owell	CHECKED BY:		S. Sha	hangi	an			RC	- F	VATEI		= /FI	
DATE (ST	ART) [,]	20.1	ulv 2016	DATE (FINISH)		20 Jul	/ 2016	3		Ŧ		•	.,			
Depth	Elevation (m)	Stratigraphy	DESC SOIL AI	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	She Ser ○ w _p w _r (blo	ear tes isitivit Wate Atter "N" V ws / 1	st (Cu) y (S) er conte berg lin alue 2 in3	ent (%) mits (% 0 cm)	△ Fi □ La) ()	eld ab
Feet Metres	82.27		GROUI	ND SURFACE			%			N	10	20 30	0 40 50	0 60 7	0 80 90)
33 10.06 34 35 36 36 37 - 11.0	, 72.21		SHALE, trace lime grey	stone, rock fragments,	X	SS-10	21	8	50/ 125mm	100						•
38 —						SS-11	33	12	42-50/	100	0					-
39 11.87	70.40								125mm							
40 —			END OF BOREHO	<u>DLE</u> :												
41 —			NOTE : End of Borebole at	11 87 m bas												
42			Borehole remained	l open and dry upon												
43 - 13.0			completion bas denotes 'belov	v ground surface'												
44 —			0	0												
45 —																
46 — 14.0)											+				_
47 —																
48 —																
49 - 45 0																
50 - 15.0																
51 -												+				
																_
$\frac{52}{53} + 16.0$)															
												++	+		++	_
												+	+		\rightarrow	_
57																
58 —												+	+	-		_
§ 59 <u>–</u> 18.0)															
60 —													-	\square	\square	_
61 —												++			++	-
62 - 19.0)															
63 —												+			+	_
64 —												$\downarrow \downarrow$				
65												+	+		++	-
· •																

REFERENCE N	0.:	076896								ENCLOSURE No.: 14
	CHD		BOREHOLE N	o.:		MW1	4-16		В	BOREHOLE REPORT
	GHU		ELEVATION: _		81	l.57 i	m			Page: <u>1</u> of <u>2</u>
CLIENT:	Infra	astructure Ontario (IC	D)						LEC	GEND
PROJECT:	Prel	liminary Geotechnica	al Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION:	700	Gordon Street, Whit	by, Ontario							ST - SHELBY TUBE
DESCRIBED B	∕: <u>S.</u> ⊦	lowell	CHECKED BY:		S. Sha	hangia	an		⊥L ▼	- WATER LEVEL
DATE (START)	12 A	August 2016	DATE (FINISH)):	12 Aug	just 20	016			
Depth Elevation	Stratigraphy	DESC SOIL A	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Shear test (Cu) \triangle Field Sensitivity (S) \Box Lab \bigcirc Water content (%) \bowtie_{μ} Atterberg limits (%) \bullet "N" Value (blows / 12 in30 cm)
Feet Metres 81.5	7	GROU	ND SURFACE			%			N	10 20 30 40 50 60 70 80 90
2		TOPSOIL : 100 mi FILL : SILTY SAND, som moist, stiff to very	n le gravel, brown, stiff #		SS1	54	8	4-9-13-15	22	○ ● 0.30 m - ● 0.30 m -
	-		11	X	SS2	75	10	3-4-7-9	11	
6		NATIVE : SANDY SILT/SAN trace to some grav brown, moist to we	D TILL, some clay, rel, oxidized stains, rt, dense	X	SS3	63	6	5-8-22-39	30	
8					SS4					
		very dense		X	SS5	100	7	22-50/ 100mm	100	
13 <u>4</u> .0		some gravel, trace	clay							WI 3 00 m Bentonite Seal
				M	SS6	100	11	50/ 75mm	100	
20 6.0 21 21		encountered bould	ler at 6.2 m bgs	M	SS7A SS7B	100	12 8	28-50/ 125mm	100 	
22 – 7.0										
24				∇	SS8	46	12	29-50/	100	
20 - 8.0 27 - 8.0 27 - 1 27 - 1 27 - 1 28 - 1								125mm		
A+Hdy 29										8.84 m
89 <u>+</u> 9.0 130 <u>-</u> 9.0					559	100	15	50/	100	#2 Silica Sand
31 —								125mm		
										Screen

REFERENCE No.:	076896								ENCLOSURE NO.: 14
GHD		BOREHOLE No).:		MW1	4-16		E	BOREHOLE REPORT
	1	ELEVATION:		81	.57 ו	m			Page: <u>2</u> of <u>2</u>
CLIENT:Infr	astructure Ontario (IC)						<u>LE(</u>	GEND
PROJECT: Pre	liminary Geotechnica	al Investigation						\boxtimes	SS - SPLIT SPOON
LOCATION: 700	Gordon Street, Whit	by, Ontario							ST - SHELBY TUBE RC - ROCK CORE
DESCRIBED BY: S. H	Howell	CHECKED BY:		S. Sha	hangia	an		Ţ	- WATER LEVEL
DATE (START): 12	August 2016	DATE (FINISH):	_	12 Aug	ust 20	016			
	1								Chaor toot (Cu)
Depth Elevation (m) Stratigraphy	DESC SOIL AI	RIPTION OF ND BEDROCK	State	Type and Number	Recovery TCR	Moisture Content	Blows pe 6 in. / 15 cm or RQD	Penetration Index / SCR	Sinear test (Cu) \square Field Sensitivity (S) \square Lab \bigcirc Water content (%) $\underset{W_{p} \ W_{p}}{H}$ Atterberg limits (%) \bullet "N" Value (blows / 12 in30 cm)
Feet Metres 81.57	GROUI	ND SURFACE			%			N	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SILTY CLAY/CLAY sand and gravel, g SHALE-BEDROCH END OF BOREHC NOTE : End of Borehole at Groundwater level completion 50 mm diameter m at 10.67 m bgs Groundwater level August 16, 2016 bgs denotes 'below	/EY SILT TILL, trace rey, wet, hard (, inferred, grey DLE: at 12.35 m bgs at 4.52 m bgs upon nonitoring well installed at 3.90 m bgs on v ground surface'		SS10 SS11A SS11B	100	16 10 9	33-50/ 75mm 37-50/ 75mm	100	10.67 m
81 19.0 62 19.0 63 64 65 64 65									
й 									

Appendix B Geotechnical Laboratory Test Results

Client	t:	Ontario Infrastructure & La	nds Corpor	Lab No.:	G1280			
Proje	ct, Site:	Preliminary Geotechnical Inv 700 Gordon Street, Whitby, (vestigation Ontario		Project No.:	076896		
В	orehole No.:	MW01-1	16		Sample No.:	SS3		
D	epth:	1.7m - 2.	0m		Enclosure:			
10	0							0
9	10							10
8	0							20
7	0							30
assing	0		/					Retained
Percent I	0							Bercent
4	0							60
3	0							70
2	0							80
								100
	0.001	0.01	0.1 Dia	meter (mm)		10		100
		Silty Clay		Sand		Gra	vel	
		Particl	Fine e-Size Limits	e Mediu s as per USCS (ASTM	m Coarse D-2487)	Fine	Coarse	
		Soil Description		Gravel (%)	Sand (%)	Cla	y & Silt (%)	
	:	Silty Sand, Some Clay, Trace Grav	vel	2	52		46	
	L			1	1	-		
Rema	i rks: Silt	size particles (0.074 to 0.002 mm)	: 37%, Clay-	-size particles (<0.00	02 mm): 9%			
	Gra	avel 2%, Sand 52%, Silt 37%, C	lay 9%					
Perfo	rmed by:	Anwar Rehani /	Riddhee P	anchal	Date:	Date: July 27, 2016		
Verifi	ed by: Raj Kadia, C.E.T. Date: August 3, 2016							

Client:		Ontario Infrastructur	e & Lands Corpor	Lab No.:	G1294					
Project, S	Site:	Preliminary Geotechn 700 Gordon Street, W	ical Investigation /hitby, Ontario		Project No.:	076896	076896			
Boreh	nole No.:		BH02-16		Sample No.:	SS6				
Depth	ו:	4	.7m - 5.0m		Enclosure:					
Depti 100 - 00 -								0 10 20 30 40 50 50 60 70		
20								90 100		
0.00)1	0.01	0.1 Diar	1 meter (mm)		10	1	00		
		Silty Clay		Sand		Gravel				
			Fine Particle-Size Limits	e Mediur as per USCS (ASTM	n Coarse D-2487)	Fine	Coarse			
		Soil Description		Gravel (%)	Sand (%)	Clay &	silt (%)			
		Silty Clay, Trace Sa	nd	0	2	9	98			
Remarks	Silt-s Grav	ize particles (0.074 to 0.0 vel 0%, Sand 2%, Silt 5	02 mm): 56%, Clay- 6%, Clay 42%	size particles (<0.00	2 mm): 42%					
Performe	ed by:	Anwar Re	ehani / Riddhee Pa	anchal	Date:	August	10, 2016			
Verified by: Raj Kadia, C.E.T. Date: August 17, 2					17, 2016					

Client:	Ontario Infrastructure & Lands Co	poration	Lab No.:	G1280			
Project, Site:	Preliminary Geotechnical Investigati 700 Gordon Street, Whitby, Ontario	on	Project No.:	076896	076896		
Borehole No.:	MW03-16		Sample No.:	SS3			
Depth:	1.7m - 2.0m		Enclosure:				
100						0	
90						- 10	
80						- 20	
70						- 30 ছ	
Passing 09						Retain 05	
50 Bercent						50 50	
40						- 60	
30						- 70	
20						- 80	
10						- 90	
0.001	0.01 0.1	Diameter (mm)		10	10	- 100)0	
		Sand		Gravel			
	Silty Clay Particle-Size Li	Fine Medium Medium Medium Medium	m Coarse D-2487)	Fine	Coarse		
	Soil Description	Gravel (%)	Sand (%)	Clay &	Silt (%)		
	Silty Sand, Some Clay, Trace Gravel	2	51	2	17		
Remarks: <u>Sill</u> Gr	-size particles (0.074 to 0.002 mm): 35%, 0 avel 2%, Sand 51%, Silt 35%, Clay 12%	lay-size particles (<0.00	2 mm): 12%				
Performed by:	Anwar Rehani / Riddhe	e Panchal	Date:	July 2	7, 2016		
Verified by:	Raj Kadia, C.E.	Τ.	Date:	August	3, 2016		

Client:	nt: Ontario Infrastructure & Lands Corporation La			G1280			
Project, Site:	Preliminary Geotechnical Investigati 700 Gordon Street, Whitby, Ontario	on	Project No.:	076896			
Borehole No.:	MW03-16		Sample No.:	SS5B			
Depth:	3.2m - 3.5m		Enclosure:				
100					0		
90					10		
80		1			20		
70					30		
bu 60					40 giu		
Ent Pas					ent Re		
Ber 20		<i>{</i>			50 Q		
40					60		
30					70		
20					80		
10					90		
0.001	0.01 0.1	Diameter (mm)		10	100 100		
		Sand		Gravel			
	Particle-Size Li	Fine Mediu nits as per USCS (ASTM	m Coarse D-2487)	Fine Coarse			
	Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%			
					,		
	Sand, Trace Silt and Gravel	3	88	9			
Bomorkoj							
Gra	avel 3%, Sand 88%, Silt 9%						
Performed by:	Anwar Rehani / Riddhe	Panchal	Date:	July 27, 2016	;		
Verified by:	Raj Kadia, C.E.	Γ.	Date:	August 3, 201	6		

Clie	nt:	Ontario Infrastructure & Land	s Corporati	on	Lab No.:	G1294		
Pro	ect, Site:	Preliminary Geotechnical Inves 700 Gordon Street, Whitby, On	tigation tario		Project No.:	076896		
	Borehole No.:	BH04-16			Sample No.:	SS4		
	Depth:	2.4m - 2.7m	l		Enclosure:			
	100							0
	90							10
	80							20
	70							30
assing	60		/					Retained
Percent F	50							50 Dercent
	40							60
	30							70
	20							
	0.001	0.01	0.1 Diamet	er (mm) 1		10		100 100
		Silty Clay		Sand		Gravel		
		Particle-S	Fine Size Limits as	Medium s per USCS (ASTM I	D-2487)	Fine	Coarse	
		Soil Description		Gravel (%)	Sand (%)	Clay	y & Silt (%)	
	:	Sandy Silt, Some Gravel, Trace Clay		11	38		51	
Rer	n arks: <u>Silt</u> Gra	size particles (0.074 to 0.002 mm): 43 avel 11%, Sand 38%, Silt 43%, Cla	3%, Clay-siz ay 8%	e particles (<0.002	2 mm): 8%			
Per	formed by:	Anwar Rehani / Riddhee Panchal		chal	Date:	Augu	ıst 10, 2016	
Ver	fied by:	Raj Kadia, C.E.T.			Date:	August 17, 2016		

Client:	-	Ontario I	nfrastruc	ture & L	ands (Corpor	ation			Lab No.:	G130	5			
Project, Site	e:	Preliminar 700 Gordo	y Geotec n Street,	hnical Ir Whitby,	nvestig , Ontar	ation io				Project No.:	07689	96			
Borehole	e No.:			MW05	5-16					Sample No.:	SS5				
Depth:	-			3.2m - 3	3.5m					Enclosure:					
100											-			0	
90														10	0
80														20	0
70														30	0
bu co															ned
nt Pass														40	ont Retai
80 50 B														50	Perce
40				_										60	0
30														70	0
20														80	D
10														90	D
0		0.	01		0).1 Diar	meter (mr	n)	1		10			100 10	00
								San	d			Gravel]	
		Silty C	lay	Parti	cle-Size	Fine Limits	e as per	USCS	Mediun ASTM I	n Coarse	Fine	Co	arse		
									_		1]	1
		Soil	Descripti	on			Gı	ravel (%)	Sand (%)		Clay & Si	ilt (%)		
	Si	ilty Sand, Tr	ace Grave	el and Cl	ay			1		55		44			
															•
Remarks:	Silt-siz	e particles (0.074 to ().002 mn	n): 34%	, Clay-	size pa	rticles	(<0.002	2 mm): 10%					
	Grave	el 1%, Sano	d 55%, S	ilt 34%,	Clay 1	0%									
Performed	by:	Anwar Rehani / Riddhee Panchal		Date:	August 10, 2016										
Verified by:	-			Raj Ka	idia, C.	.E.T.				Date:	A	ugust 17	, 2016		

Clien	t:	Ontario Infrastructure & L	ands Corpor	ation	Lab No.:	G1294		
Proje	ct, Site:	Preliminary Geotechnical Ir 700 Gordon Street, Whitby	rvestigation , Ontario		Project No.:	076896		
В	orehole No	: BH06	-16		Sample No.:	SS5		
D	epth:	3.2m -	3.5m		Enclosure:			
10	00							0
ę	00							10
8	30							20
-	70							30 5
Passing	60							Retaine
ercent	50							50 50
<u>م</u>	10							60
:	30							70
2	20							80
	10							90
	0.001	0.01	0.1 Diar	meter (mm)		10		100 100
		Silty Clay		Sand		Grave	I	
		Parti	Fine cle-Size Limits	e Mediur as per USCS (ASTM	n Coarse D-2487)	Fine	Coarse	
		Soil Description		Gravel (%)	Sand (%)	Clay	& Silt (%)	
	s	ilty Clay/Clayey Silt, Sandy, Trace	Gravel	3	44		53	
					I]
Rema	nrks: <u>S</u>	ilt-size particles (0.074 to 0.002 mr	n): 41%, Clay-	size particles (<0.00	2 mm): 12%			
	G	ravel 3%, Sand 44%, Silt 41%,	Clay 12%					
Perfo	rmed by:	Anwar Rehani	/ Riddhee Pa	anchal	Date:	Augus	t 10, 2016	
Verifi	ed by:	Raj Ka	idia, C.E.T.		Date:	Augus	t 17, 2016	

Clie	nt:	Ontario Infrastructure & Lands Con	poration	Lab No.:	G1280		
Proj	ect, Site:	Preliminary Geotechnical Investigati 700 Gordon Street, Whitby, Ontario	on	Project No.:	076896		
	Borehole No.:	BH7-16		Sample No.:	SS5A		
	Depth:	3.2m - 3.3m		Enclosure:			
	100						T ⁰
	90						- 10
	00						20
	80						20
	70						30
assing	60						etai 04
cent Pa	50						50 50
Per							Ber
	40						+ 60
	30						70
	20						80
	10						+ 90
	0.001	0.01 0.1	Diameter (mm)		10	1	100 00
		Silty Clay	Sand		Gravel		
		Particle-Size Li	Fine Mediu nits as per USCS (ASTM	m Coarse D-2487)	Fine	Coarse	
		Soil Description	Gravel (%)	Sand (%)	Clay &	Silt (%)	
		Silty Sand, Trace Clay and Gravel	8	59	:	33	
	L			l]
Ren	narks: _{Sil}	t-size particles (0.074 to 0.002 mm): 27%, C	ay-size particles (<0.00	2 mm): 6%			
	Gi	avel 8%, Sand 59%, Silt 27%, Clay 6%					
Per	ormed by:	Anwar Rehani / Riddhee Panchal		Date:	August 10, 2016		
Veri	fied by:	Raj Kadia, C.E.	Γ	Date:	August	17, 2016	

Clie	Client:	Ontario Infrastructure & Land	s Corpor	ation		Lab No.:	G1280		
Proj	ect, Site:	Preliminary Geotechnical Inves 700 Gordon Street, Whitby, On	tigation tario			Project No.:	076896		
	Borehole No.:	BH07-16			_	Sample No.:	SS5B		
	Depth:	3.3m - 3.4n	ı			Enclosure:			
	100								o
	90								10
	80								20
	70								30
Passing	60								Retained
ercent	50		/						50 50
Å	40		/						<u>م</u> 60
	30								70
									90
	0.001	0.01	0.1 Diar	meter (mm)	1		10		100
		Silty Clay		Sand			Grav	vel	
		Particle-S	Fine Size Limits	as per USC	Medium S (ASTM [D-2487)	Fine	Coarse	
		Soil Description		Gravel	(%)	Sand (%)	Cla	y & Silt (%)	
		Silty Sand, Trace Gravel and Clay		1		59		40	
Ren	n arks: <u>Silt</u> Gra	-size particles (0.074 to 0.002 mm): 3 avel 1%, Sand 59%, Silt 33%, Cla	3%, Clay- y 7%	size particle	s (<0.002	? mm): 7%			
Per	ormed by:	Anwar Rehani / Ri	Anwar Rehani / Riddhee Panchal			Date:	Augu	ust 10, 2016	
Veri	fied by:	Raj Kadia,	C.E.T.			Date:			

Clie	ent:	Ontario Infrastructure & Lands C	orporation	Lab No.:	G1294	
Pro	ject, Site:	Preliminary Geotechnical Investig 700 Gordon Street, Whitby, Ontar	tion	Project No.:	076896	
	Borehole No	b.: BH08-16		Sample No.:	SS6	
	Depth:	4.7m - 5.0m		Enclosure:		
	100					
	90					10
	80					20
	80					20
_	70					30
Passing	60					Retaine 05
Percent	50					50 50
	40					60
	30					70
	20					80
	10					90
	0 001	001 001	1		10	100
	0.001	0.01 0	Diameter (mm)		10	100
		Silty Clay	Sand		Gravel	
		Particle-Size	Limits as per USCS (ASTM	1 D-2487)		
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%	6)
		Silty Sand, Some Gravel, Trace Clay	14	57	29	
	L		I]
Rei	marks: S	Silt-size particles (0.074 to 0.002 mm): 23%	Clay-size particles (<0.0	02 mm): 6%		
	<u>(</u>	Gravel 14%, Sand 57%, Silt 23%, Clay	%			
Per	formed by:	Anwar Rehani / Riddl	ee Panchal	Date:	August 10, 20	16
Ver	ified by:	Raj Kadia, C.	E.T.	Date:	August 17, 20	16

Clier	ıt:	Ontario Infrastructure & Lar	nds Corpor	ration	Lab No.:	G1280		
Proje	ect, Site:	Preliminary Geotechnical Inve 700 Gordon Street, Whitby, C	estigation Intario		Project No.:	076896		
E	Borehole No.:	BH09-16	6		Sample No.:	SS3		
0	Depth:	1.7m - 2.0)m		Enclosure:			
1	00							0
	90							10
	80							20
	70							30
ing	60							40 in the test
ent Pass			l f					ant Reta
Perce	50							50 SO
	40							60
	20							80
	10							90
	0.001	0.01	0.1 Diar	meter (mm)		10		100 100
				Sand		Grave	<u>.</u>	
		Silty Clay	Fine	e Mediu	ım Coarse	Fine	Coarse	
		Particle	-Size Limits	as per USCS (ASTM	1 D-2487)			
		Soil Description		Gravel (%)	Sand (%)	Clay	& Silt (%)	
	Silty Sand, Some Clay, Trace Gravel		7	50		43		
	L			1				1
Rem	arks: _{Sil}	t-size particles (0.074 to 0.002 mm):	30%, Clay-	-size particles (<0.00	02 mm): 13%			
	Gr	avel 7%, Sand 50%, Silt 30%, Cl	ay 13%					
Perfo	ormed by:	Anwar Rehani / Riddhee Panchal		Date:	July 27, 2016			
Verif	ied by:	Raj Kadia, C.E.T.			Date:	August 3, 2016		

Client	Client:	Ontario Infrastructure & L	ands Corpo	ration	Lab No.:	G1280		
Projec	ct, Site:	Preliminary Geotechnical I 700 Gordon Street, Whitby	nvestigation , Ontario		Project No.:	076896		
Bo	orehole No.:	BH09	9-16		Sample No.:	SS6		
De	epth:	4.7m -	5.0m		Enclosure:			
10)							0
9)							10
8)							20
7)							30
e 9)							atained
ercent Pa)							ercent R
د 4)							
3)							70
2)							80
1	,							90
	0.001	0.01	0.1 Dia	meter (mm)		10		100 100
		0.14.2.0		Sand		Grave	l	
		Parti	Find	e Medium s as per USCS (ASTM	n Coarse D-2487)	Fine	Coarse	
		Soil Description		Gravel (%)	Sand (%)	Clay	& Silt (%)	
	Sil	ty Clay/Clayey Silt, Sandy, Trace	Gravel	3	46		51	
	L			1	I			
Rema	rks: <u>Silt</u>	-size particles (0.074 to 0.002 mr	m): 38%, Clay	-size particles (<0.002	2 mm): 13%			
	Gra	avel 3%, Sand 46%, Silt 38%,	Clay 13%					
Perfo	med by:	Anwar Rehani	/ Riddhee P	anchal	Date:	Augus	t 10, 2016	
Verifie	ed by:	Raj Ka	adia, C.E.T.		Date:	Augus	t 17, 2016	

Clie	ent:	Ontario Infrastructure & Lands C	orporation	Lab No.:	G1280		
Pro	ject, Site:	Preliminary Geotechnical Investiga 700 Gordon Street, Whitby, Ontario	tion	Project No.:	076896		_
	Borehole No.	BH09-16		Sample No.:	SS9		
	Depth:	9.3m - 9.6m		Enclosure:			
	100						0
	90						- 10
	80						- 20
	70		/				- 30
þ							per
ıt Passi	60						t Retair
Percen	50						50 Bercen
	40						60
	30						- 70
	20						- 80
	10						- 90
	0.001	0.01 0.4	Diameter (mm)		10	1	100 00
		Silty Clay	Sand		Gravel		
		Particle-Size	Fine Mediu imits as per USCS (ASTM	m Coarse D-2487)	Fine C	Coarse	
		Soil Description	Gravel (%)	Sand (%)	Clay &	Silt (%)	
		Silty Clay/Clayey Silt, Sandy	0	47	5	3	
	L		1	1			
Rer	marks: _{Si}	It-size particles (0.074 to 0.002 mm): 42%,	Clay-size particles (<0.00	02 mm): 11%			
	G	ravel 0%, Sand 47%, Silt 42%, Clay 11	%				
Per	formed by:	Anwar Rehani / Riddh	ee Panchal	Date:	July 27	, 2016	
Ver	ified by:	Raj Kadia, C.I	.т.	Date:	August	3, 2016	

Client:		Ontario Infrastructure & Lands Corp	oration	Lab No.:	G1305		_
Pro	ject, Site:	Preliminary Geotechnical Investigatio 700 Gordon Street, Whitby, Ontario	n	Project No.:	076896		_
	Borehole No.:	BH11-16		Sample No.:	SS5		
	Depth:	3.2m - 3.5m		Enclosure:			_
	100						0
	90						10
	80						20
							20
	70						30 P
Passing	60					·	Retaine
ercent	50						50 Dercent
	40						6 0
	30						70
	20						80
	10						90
	0.001	0.01 0.1			10	100	100
			Dameter (mm)		0		
		Silty Clay	ine Mediu	m Coarse	Fine Co	barse	
		Particle-Size Lim	its as per USCS (ASTM	D-2487)			
		Soil Description	Gravel (%)	Sand (%)	Clay & S	ilt (%)	
		Silty Sand, Some Clay, Trace Gravel	4	53	43		
							_
Rer	narks: _{Sil}	t-size particles (0.074 to 0.002 mm): 31%, Cla	ay-size particles (<0.00	2 mm): 12%			_
	G	ravel 4%, Sand 53%, Silt 31%, Clay 12%					-
Per	formed by:	Anwar Rehani / Riddhee	Anwar Rehani / Riddhee Panchal		August 10), 2016	_
Ver	ified by:	Raj Kadia, C.E.T	Date:	August 17, 2016			

Client:		Ontario Infrastructure &	Lands Corpor	ation	Lab No.:	G1286		
Project,	, Site:	Preliminary Geotechnical 700 Gordon Street, Whitt	Investigation by, Ontario		Project No.:	076896		
Bore	ehole No.:	MW1	2D-16		Sample No.:	SS11		
Dep	oth:	12.3m	- 12.6m		Enclosure:			
100								0
90 -								10
30								10
80								20
70								30
assing								tetained
Bercent P								50 50
40								60
30								70
20								
0								100
0.0	001	0.01	0.1 Diar	neter (mm) 1		10		100
		Silty Clay		Sand		Gravel	_	
		Pa	rticle-Size Limits	as per USCS (ASTM	n Coarse D-2487)	Fine	Coarse	
		Soil Description		Gravel (%)	Sand (%)	Clay	& Silt (%)	
		Silty Clay, Sandy, Trace Gra	vel	2	24		74	
	L							
Remark	(s: <u>Silt-</u>	size particles (0.074 to 0.002 r	nm): 55%, Clay-	size particles (<0.00	2 mm): 19%			
	Gra	vel 2%, Sand 24%, Silt 55%	%, Clay 19%					
Perform	ned by:	Anwar Reha	ni / Riddhee Pa	anchal	Date:	Augus	t 10, 2016	
Verified	l by:	Raj ł	Kadia, C.E.T.		Date:	Augus	t 17, 2016	

Clie	nt:	Ontario Infrastructure & Lands Corp	oration	Lab No.:	G1286		
Proj	ect, Site:	Preliminary Geotechnical Investigatio 700 Gordon Street, Whitby, Ontario	n	Project No.:	076896		
	Borehole No	b.: BH13-16		Sample No.:	SS5		
	Depth:	3.0m - 3.2m		Enclosure:			
	100						0
	90						10
	80						20
	70						20
5	70						- 30 g
Passinę	60						Retaine
ercent	50						ercent 50
ď.	40						≙ 60
	20						- 80
	10						- 90
	0.001	0.01 0.1	liameter (mm)		10	1	⊥ 100 00
		Silty Clay	Sand		Gravel		
		Particle-Size Lin	ine Mediu its as per USCS (ASTM	m Coarse D-2487)	Fine	Coarse	
		Soil Description	Gravel (%)	Sand (%)	Clay &	Silt (%)	
		Silty Sand, Some Clay, Trace Gravel	10	44		46	
	L			1	1]
Ren	narks: <u>s</u>	Silt-size particles (0.074 to 0.002 mm): 35%, Cl	ay-size particles (<0.00	2 mm): 11%			
	_(Gravel 10%, Sand 44%, Silt 35%, Clay 11%	, D				
Per	ormed by:	Anwar Rehani / Riddhee	Anwar Rehani / Riddhee Panchal		July 2	7, 2016	
Veri	fied by:	Raj Kadia, C.E.T	Raj Kadia, C.E.T.		August 3, 2016		

Client:	Ontario Infrastructure & Lands Corporation									Lab No.:	G1286	6			
Project, Si	te:	Prelimina 700 Gord	ry Geot on Stree	echnical et, Whitt	Inves by, On	tigation tario	I			Project No.:	07689	6			
Boreho	le No.:			BH	13-16				_	Sample No.:	SS6				
Depth:				4.6m	- 4.8m	l			_	Enclosure:					
100											-			0	
90)
80														20)
70)
60 60														40) stained
ocent Ba															o ercent Re
د 40														60	ď
30														70)
20														- 80)
10	<u> </u>													90)
0.001			0.01			0.1 Di	ameter (n	nm)	1		10			100 10	00
							Sand				Gravel				
		Silty	Clay	Pa	rticle-S	Fii ize Limit	ne ts. as pe	r USCS	Mediu	m Coarse	Fine	Coa	irse		
															1
		Soil	Descrip	ption			G	Gravel	(%)	Sand (%)	C	lay & Sil	t (%)		
	Silty Sand, Some Clay, Trace Gravel						2		53		45				
Remarks:	Silt-s Gra	size particles vel 2%, Sar	(0.074 t nd 53%,	o 0.002 r Silt 32%	mm): 32 %, Clay	2%, Clay / 13%	y-size p	articles	s (<0.00)2 mm): 13%					
Performed	l by:		Anw	ar Reha	ni / Ric	ddhee F	Pancha	1		Date:	Αι	i <u>gust</u> 10,	2016		
Verified by	<i>ı</i> :			Raj ł	Kadia,	C.E.T.				Date:	Au	igust 17,	2016		

Clie	ent:	Ontario Infrastructure & Lands	Corporation	Lab No.:	G1286		_
Pro	ject, Site:	Preliminary Geotechnical Investig 700 Gordon Street, Whitby, Onta	jation rio	Project No.:	076896		_
	Borehole N	lo.: BH13-16		Sample No.:	SS8	_	
	Depth:	7.0m - 7.3m		Enclosure:			_
	100					7	0
	90					/	10
							00
	80				/		20
	70						30
assing	60						05 Retained
ercent F	50						50 DE
ď	40						د 60
	20						70
	30						10
	20						80
	10						90
	0.001	0.01).1 Diameter (mm)	1	10	100	100
			Sand		Gravel		
		Silty Clay Particle-Siz	Fine Med	ium Coarse	Fine (Coarse	
							-
		Soil Description	Gravel (%)	Sand (%)	Clay &	Silt (%)	
		Sand and Gravel, Some Silt, Trace Clay	40	43	1	7	
	L		I		L		
Rer	marks:	Silt-size particles (0.074 to 0.002 mm): 149	b, Clay-size particles (<0.0	002 mm): 3%			
		Gravel 40%, Sand 43%, Silt 14%, Clay	3%				_
Per	formed by	Anwar Rehani / Rido	hee Panchal	Date:	August	15, 2016	_
Ver	ified by:	Raj Kadia, C	.E.T.	Date:	August 17, 2016		

Client:		Ontario Infr	astructure & Lar	nds Corporation Lab no.: G1294		
Project/Site:		Prelimina 700 G	ary Geotechnical Gordon Street, W	Investigation Project no.: 076896		
Borehole no.:	BH02-16	i	Sample no.:	SS6 Depth: 4.7m - 5.0m		
Soil description:		Low Plasti	city Inorganic Clay	y (CL) Date sampled: 28-Jul-16		
Apparatus:	Hand	Crank	Balance no.:	1 Porcelain bowl no.: 7		
Liquid limit device no.:		2	Oven no.:	Spatula no.: 2		
Sieve no.:	4	.0	Glass plate no.:	2		
	Liquid Limit	(LL):		Soil Preparation:		
	Test No. 1	Test No. 2	Test No. 3	✓ Cohesive <425 μm ✓ Dry preparation		
Number of blows	35	30	24	Cohesive >425 µm ☐ Wet preparation		
-	Water Content:			Non-cohesive		
Tare no.	AT41	AT29	AT38	Results		
Wet soil+tare, g	25.99	27.75	27.12			
Dry soil+tare, g	23.44	24.78	24.26	31.0		
Mass of water, g	2.55	2.97	2.86	(%) # 30.5		
Tare, g	14.86	14.93	14.91			
Mass of soil, g	8.58	9.85	9.35			
Water content % 29.7% 30.2%		30.0%	29.5			
				29.0		
Wet soil+tare a	19.03	20.34				
Drv soil+tare, g	18.51	19.62		28.5 22 24 26 28 30 32 34 36		
Mass of water, g	0.52	0.72		Soil Plasticity Chart		
Tare, g	15.04	14.86				
Mass of soil, g	3.47	4.76		60 High plasticity		
Water content %	15.0%	15.1%		Low particity Inorganic clay		
Average water content %	15	1%				
Natural Wate	r Content (W ⁿ):				
Tare no.	C31			Low compressibility		
Wet soil+tare, g	48.6			20 Inorganic silt - High compressibility inorganic silt		
Dry soil+tare, g	42.6			10		
Mass of water, g	6.00			0 10 20 30 40 50 60 70 80 90 100		
Tare, g	1.30			Liquid Limit LL		
Mass of soil, g	41.30			Liquid Limit Plastic Limit (LL) (PL) Plasticity Index (PI) Natural Water Content W ⁿ		
Water content %	14.5%			31 15 16 15		
Remarks:				• • •		
Performed by:		Didah	i Panchal	Date: 0/12/2016		
- -		rtiuun	i i anullal	0/12/2010		
Verified by:		Raj Ka	dia, C.E.T.	Date: 8/17/2016		

Client:		Ontario Infrastructure & Lands Corporatio				Lab no.:	G1280	
Project/Site:		Prelimina 700 G	ary Geotechnical Sordon Street, W	Investigation hitby, ON		Project no.:	076896	
Borehole no.:	MW03-16	5	Sample no.:		SS3	Depth:	1.7m - 2.0m	
Soil description:	Low Compressibility Inorganic Clay			Silt (CL-ML)		Date sampled:	<u>18-Jul-16</u>	
Apparatus:	Hand	Crank	Balance no.:		1	Porcelain bowl no.:	2	
Liquid limit device no.:	:	2	Oven no.:		1	Spatula no.:	2	
Sieve no.:	40		40 Glass plate no.:		2	-		
	Liquid Limit (LL):	1	Soil Preparat	ion:			
	Test No. 1	Test No. 2	Test No. 3	\checkmark	Cohesive <425 µn	n 🗸	Dry preparation	
Number of blows	33	28	25		Cohesive >425 µn	n 🗆	Wet preparation	
	Water Conte	nt:	r		Non-cohesive			
Tare no.	AT-44	AT-42	AT-11			Results		
Wet soil+tare, g	26.68	24.87	26.59	17.5				
Dry soil+tare, g	25.01	23.42	24.85					
Mass of water, g	1.67	1.45	1.74	(%)				
Tare, g	14.83	14.91	14.83	utent 17.0				
Mass of soil, g	10.18	8.51	10.02	ter Co				
Water content %	16.4%	17.0%	17.4%	≥ 16.5	5			
Plastic Limit (Pl	L) - Water Cont	ent:						
Tare no.	AT46	AT3						
Wet soil+tare, g	18.58	19.15		16.0)			
Dry soil+tare, g	18.22	18.72			24 26	28 30 Nb Blows	32 34	
Mass of water, g	0.36	0.43			Soil	Plasticity Chart		
Tare, g	14.98	14.93		70		LL 50		
Mass of soil, g	3.24	3.79		60	Low plasticity	High plast Inorganic	icity clay	
Water content %	11.1%	11.3%		li 1 50 −		(CH	
Average water content %	11.	2%		ä 40 –				
Natural Wate	r Content (W ⁿ):		titic 30 -	CL			
Tare no.	C7			Plasti	Low compressibility		(MH) and (CH)	
Wet soil+tare, g	63.4			20 -	//	- Hig ino	h compressibility rganic silt rganic clay	
Dry soil+tare, g	60.1			10		- Medium co norganic s	pmpressibility silt	
Mass of water, g	3.30			0	10 20 3	[™] Jand ^{OL} - Organic cl 0 40 50 60	^{ay} 70 80 90 100	
Tare, g	1.30					Liquid Limit LL		
Mass of soil, g	58.80			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ	
Water content %	5.6%			17	11	6	6	
Remarks:				-				
Performed by:		Riddh	i Panchal		Date:		8/2/2016	
					8/2/2016			
Verified by:		Raj Ka	dia, C.E.T.		Date: 8/3/2016			

Client:	Ontario In	frastructure & Lan	ds Corporation		Lab no.:	G1294	
Project/Site:	Prelimir 700	nary Geotechnical Gordon Street, W	Investigation hitby, ON		Project no.:	076896	
Borehole no.:	BH04-16	Sample no.:	SS	4	Depth:	2.4m - 2.7m	
Soil description:		Non-Plastic (np)			Date sampled:	29-Jul-16	
Apparatus:	Hand Crank	Balance no.:	1		Porcelain bowl no .:	2	
Liquid limit device no.:		Oven no.:	1		Spatula no.:	2	
Sieve no.:	40	Glass plate no.:	2				
	Liquid Limit (LL):	[Soil Preparation	:			
	Test No. 1 Test No. 2	Test No. 3		ohesive <425 µn	n 🗸	Dry preparation	
Number of blows				ohesive >425 µn	י 🗆	Wet preparation	
	Water Content:		No	on-cohesive			
Tare no.					Results		
Wet soil+tare, g			16.5				
Dry soil+tare, g			16.0				
Mass of water, g			(%)				
Tare, g			ontent				
Mass of soil, g			ប័ _{15.0} រត្ន				
Water content %			≷ 14.5 —				
Plastic Limit (PL) - Water Content:							
Tare no.			14.0				
Wet soil+tare, g			13.5	24			
Dry soil+tare, g			22	24	Nb Blows	32 34 30	
Mass of water, g			70	Soil	Plasticity Chart		
Tare, g			/0		LL 50		
Mass of soil, g			60 Lov	w plasticity	High plastic Inorgani¢ c	sity lay	
Water content %			4 1 50		C	н	
Average water content %			a 40				
Natural Wate	r Content (W ⁿ):		i 30	CL			
Tare no.	A12		vol Dasti	w compressibilty		(MH) and (CH)	
Wet soil+tare, g	35.0		20		- High inor - Inord	a compressibility ganic silt ganic clay	
Dry soil+tare, g	33.9		10		- Medium co inorganic si	mpressibility ilt	
Mass of water, g	1.10		0	10 20 3	0 40 50 60	70 80 90 100	
Tare, g	1.30				Liquid Limit LL		
Mass of soil, g	32.60		Liquid Limit I (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ	
Water content %	3.4%			Non-Plastic (r	np)	3	
Remarks:							
Performed by:	Didd	hi Panchal		Date:		8/15/2016	
						0/10/2010	
Verified by:	Raj K	adia, C.E.T.		Date:		8/17/2016	

Client:		Ontario Infr	astructure & Lar	nds Corporation	n Lab no.:		G1305	
Project/Site:		Prelimina 700 G	ary Geotechnical Gordon Street, W	Investigation hitby, ON	gation Project no.:		076896	
Borehole no.:	MW5-16	;	Sample no .:	S	S5	Depth:	3.2m - 3.5m	
Soil description:	Lo	ow Compressibi	lity Inorganic Clay	/Silt (CL-ML)		Date sampled:	26-Jul-16	
Apparatus:	Hand	Crank	Balance no.:		1	Porcelain bowl no .:	10	
Liquid limit device no.:		2	Oven no.:		1	Spatula no.:	2	
Sieve no.:	2	10	Glass plate no.:		2			
	Liquid Limit	(LL):		Soil Preparatio	n:			
	Test No. 1	Test No. 2	Test No. 3	V C	cohesive <425 μn	n 🗸	Dry preparation	
Number of blows	30	26	22		ohesive >425 μn	n 🗌	Wet preparation	
	Water Content:			Non-cohesive				
Tare no.	AT13	AT16	AT46			Results		
Wet soil+tare, g	24.31	25.04	26.79	16.5 -				
Dry soil+tare, g	23.08	23.68	25.14					
Mass of water, g	1.23	1.36	1.65	(%) 				
Tare, g	14.95	14.99	15.00	ontent				
Mass of soil, g	8.13	8.69	10.14	iter Co				
Water content %	15.1%	15.7%	16.3%	× ≥ 15.5 –				
Plastic Limit (Pl	L) - Water Con	tent:						
Tare no.	AT22	AT23						
Wet soil+tare, g	22.13	20.65		15.0	·	05 07		
Dry soil+tare, g	21.45	20.09		۷	1 23	Nb Blows	29 31	
Mass of water, g	0.68	0.56		70	Soil	Plasticity Chart		
Tare, g	14.81	14.79		/0		LL 50		
Mass of soil, g	6.64	5.30			ow plasticity	High plastic Inorganic c	city lay	
Water content %	10.2%	10.6%		۳- ۳ 50 - ۳		(°	H)	
Average water content %	10	.4%		전 40				
Natural Wate	r Content (W ⁿ):		city Ind	CL			
Tare no.	HY15				ow compressibility		(MH) and (CH)	
Wet soil+tare, g	356.7			20		- High inor - Inor	n compressibility ganic silt papic clay	
Dry soil+tare, g	339.2			10		- Medium co inorganic s	mpressibility	
Mass of water, g	17.49			0	10 20 3	0 40 50 60	70 80 90 100	
Tare, g	13.69					Liquid Limit LL		
Mass of soil, g	325.51			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ	
Water content %	5.4%			16	10	6	5	
Remarks:	• 							
Performed by		D . 1	Denstal		Date:		0/45/0040	
r enomied by.		Riddh	I Panchal		Date: 8/15/2016			
Verified by:		Raj Ka	dia, C.E.T.		Date:	8/17/2016		

Client:		Ontario Infr	astructure & Lar	Ids Corporation Lab no.: G1294
Project/Site:		Prelimina 700 G	ry Geotechnical ordon Street, W	Investigation Project no.: 076896
Borehole no.:	BH06-16		Sample no.:	<u>SS5</u> Depth: <u>3.2m - 3.5m</u>
Soil description:	Low	v Compressibil	ity Inorganic Clay/	Silt (CL-ML) Date sampled: 27-Jul-16
Apparatus:	Hand C	Crank	Balance no.:	Porcelain bowl no.:8
Liquid limit device no.:	2		Oven no.:	Spatula no.: 2
Sieve no.:	40)	Glass plate no.:	2
	Liquid Limit (L	_L):		Soil Preparation:
	Test No. 1	Test No. 2	Test No. 3	Cohesive <425 µm ✓ Dry preparation
Number of blows	31	27	22	Cohesive >425 µm ☐ Wet preparation
	Water Contei	nt:		Non-cohesive
l are no.	AT3	AT9	AT21	Results
Wet soil+tare, g	25.80	27.00	26.42	
Dry soli+tare, g	24.29	25.31	24.76	
Mass of water, g	1.51	1.69	1.00	8 17.0
	0.35	10.25	0.70	Conte
Water content %	9.55	16.5%	9.70	
Plastic Limit (Pl	Vater content % 16.1% 16.5%			16.5
Tare no		AT46		
Wet soil+tare. g	20.24	19 70		
Dry soil+tare, q	19.74	19.24		20 22 24 26 28 30 32 Nb Blows
Mass of water, g	0.50	0.46		Soil Plasticity Chart
Tare, g	14.87	15.00		70
Mass of soil, g	4.87	4.24		60 High plasticity
Water content %	10.3%	10.8%		L Inorganic clay
Average water content %	10.6	3%		
Natural Wate	r Content (W ⁿ)	:		
Tare no.	C10			Low compressibility
Wet soil+tare, g	31.1			20 Inorganic sult - High compressibility inorganic silt Inorganic dury
Dry soil+tare, g	29.0			10
Mass of water, g	2.10			0 10 20 30 40 50 60 70 80 90 100
Tare, g	1.30			Liquid Limit LL
Mass of soil, g	27.70			Liquid Limit Plastic Limit (LL) (PL) Plasticity Index (PI) Natural Water Content W ⁿ
Water content %	7.6%			17 11 6 8
Remarks:				•
Performed by:		Riddh	Panchal	Date: 8/12/2016
Verified by:		Raj Kao	dia, C.E.T.	Date: 8/17/2016

Client:	Ontario I	nfrastructure & Lar	ids Corporation	Lab no.:	G1280	
Project/Site:	Prelim 70	inary Geotechnical) Gordon Street, W	Investigation hitby, ON	Project no.:	076896	
Borehole no.:	BH07-16	Sample no.:	SS5A	Depth:	3.2m - 3.3m	
Soil description:		Non-Plastic (np)		_Date sampled:	21-Jul-16	
Apparatus:	Hand Crank	Balance no.:	1	Porcelain bowl no.:	2	
Liquid limit device no.:	-	Oven no.:	1	Spatula no.:	2	
Sieve no.:	40 Glass plate no.:		2	_		
	Liquid Limit (LL):	1	Soil Preparation:			
	Test No. 1 Test No. 2	2 Test No. 3	Cohesive <425 µ	m 🗸	Dry preparation	
Number of blows			Cohesive >425 µ	m 🗌	Wet preparation	
	Water Content:		Non-cohesive			
Tare no.				Results		
Wet soil+tare, g			16.5			
Dry soil+tare, g			16.0			
Mass of water, g			(%)			
Tare, g						
Mass of soil, g			ម្ភ រត្ត្			
Water content %			× 14.5 −			
Plastic Limit (PL) - Water Content:						
Tare no.			14.0			
Wet soil+tare, g			13.5			
Dry soil+tare, g			22 24	26 28 30 Nb Blows	32 34 36	
Mass of water, g			Soi	I Plasticity Chart		
Tare, g			70	LL 5D		
Mass of soil, g			60 Low plasticity	High plasti Inorganic o	city Iay	
Water content %				(H	
Average water content %			ä 40			
Natural Wate	r Content (W ⁿ):					
Tare no.	A27		Low compressibility		(MH) and (CH)	
Wet soil+tare, g	27.3		20 millinganio onc	- High inot - Inor	n compressibility rganic silt ganic clay	
Dry soil+tare, g	25.8			Medium conorganic s	ilt	
Mass of water, g	1.50		0 10 20	30 40 50 60	70 80 90 100	
Tare, g	1.30			Liquid Limit LL		
Mass of soil, g	24.50		Liquid Limit (LL) Plastic Limit (PL) Plasticity Index (PI)	Natural Water Content W ⁿ	
Water content %	6.1%		Non-Plastic	(np)	6	
Remarks:		·	-		·	
Performed by:	Pid	dhi Panchal	Date:		8/15/2016	
					0/10/2010	
Verified by:	Raj I	Kadia, C.E.T.	Date:		8/17/2016	

Client:	Ontario Ir	frastructure & Lar	nds Corporation Lab no.: G1294
Project/Site:	Prelimir 700	nary Geotechnical Gordon Street, W	I Investigation /hitby, ON 076896
Borehole no.:	BH08-16	Sample no.:	SS6 Depth: 4.7m - 5.0m
Soil description:		Non-Plastic (np)	Date sampled: 29-Jul-16
Apparatus:	Hand Crank	Balance no.:	1 Porcelain bowl no.: 2
Liquid limit device no.:		Oven no.:	Spatula no.:2
Sieve no.:	40	Glass plate no.:	2
Γ	Liquid Limit (LL):		Soil Preparation:
	Test No. 1 Test No. 2	Test No. 3	Cohesive <425 µm Dry preparation
Number of blows			Cohesive >425 µm Wet preparation
	Water Content:		Non-cohesive
Tare no.		_	Results
Wet soil+tare, g		<u> </u>	16.5
Dry soil+tare, g			16.0
Mass of water, g			(%)
Tare, g			
Mass of soil, g	ļ	_	
Water content %		_	14.5
Plastic Limit (Pl	L) - Water Content:		
Tare no.			14.0
Wet soil+tare, g			
Dry soil+tare, g			22 24 26 28 30 32 34 30 Nb Blows
Mass of water, g			Soil Plasticity Chart
Tare, g			
Mass of soil, g			60 Low plasticity High plasticity Inorganic clay
Water content %			
Average water content %			
Natural Wate	r Content (W ⁿ):		
Tare no.	C7		Low compressibility
Wet soil+tare, g	32.9	7	- High compressibility inorganic silt - Inbraanic clav
Dry soil+tare, g	32.2	1	10 Meaning compressibility norganic silit
Mass of water, g	0.70	7	0 10 20 30 40 50 60 70 80 90 100
Tare, g	1.30	1	Liquid Limit LL
Mass of soil, g	30.90	1	Liquid Limit Plastic Limit (LL) (PL) Plasticity Index (PI) Natural Water Content W ⁿ
Water content %	2.3%	1	Non-Plastic (np) 2
Remarks:			<u> </u>
Porformed by:			
Performed by.	Ridd	Ihi Panchal	8/15/2016
Verified by:	Raj K	adia, C.E.T.	Date: 8/17/2016

Client:		Ontario Infi	rastructure & Lar	Ids Corporation Lab no.: G1280
Project/Site:		Prelimina 700 C	ary Geotechnical Gordon Street, W	Investigation Project no.: 076896
Borehole no.:	BH09-16		Sample no.:	SS3 Depth: 1.7m - 2.0m
Soil description:	Lo	w Compressibi	lity Inorganic Clay	/Silt (CL-ML) Date sampled:
Apparatus:	Hand	Crank	Balance no.:	1 Porcelain bowl no.: 1
Liquid limit device no.:		2	Oven no.:	1 Spatula no.: 2
Sieve no.:	4	0	Glass plate no.:	2
	Liquid Limit	(LL):	1	Soil Preparation:
	Test No. 1	Test No. 2	Test No. 3	✓ Cohesive <425 µm ✓ Dry preparation
Number of blows	28	22	19	Cohesive >425 µm
	Water Content:			Non-cohesive
Tare no.	AT-9	AT-31	AT38	Results
Wet soil+tare, g	26.30	30.58	29.67	19.5
Dry soil+tare, g	24.64	28.23	27.36	19.0
Mass of water, g	1.66	2.35	2.31	(%) 185
Tare, g	15.05	15.06	14.86	
Mass of soil, g	9.59	13.17	12.50	
Water content %	17.3%	17.8%	18.5%	17.5
Plastic Limit (PL) - Water Content:			-	
Tare no.	AT22	AT23		17.0
Wet soil+tare, g	22.27	20.95		
Dry soil+tare, g	21.52	20.33		1/ 19 21 23 23 27 29 Nb Blows
Mass of water, g	0.75	0.62		Soil Plasticity Chart
Tare, g	14.76	14.76		
Mass of soil, g	6.76	5.57		60 Low plasticity Inorganic clay
Water content %	11.1%	11.1%		
Average water content %	11.	1%		
Natural Wate	er Content (W ⁿ):		
Tare no.	E37			Low compressibility
Wet soil+tare, g	38.3			- High compressibility inorganic silt - Inorganic clav
Dry soil+tare, g	36.2			10 Ci, Mi, Zi, Mi, Ci,
Mass of water, g	2.10			0 10 20 30 40 50 60 70 80 90 100
Tare, g	1.30			Liquid Limit LL
Mass of soil, g	34.90			Liquid Limit Plastic Limit (LL) (PL) Plasticity Index (PI) Natural Water Content W ⁿ
Water content %	6.0%			18 11 7 6
Remarks:				•
Performed by:		Diddh	Denshal	Date: 0/0/0046
······································		Riudh	Fanchal	δ/2/2010
Verified by:		Raj Ka	dia, C.E.T.	Date: 8/3/2016

Client:		Ontario Infr	astructure & Lar	Is Corporation Lab no.: G1280		
Project/Site:		Prelimina 700 G	ary Geotechnical Sordon Street, W	nvestigation Project no.: 076896		
Borehole no.:	BH09-16		Sample no.:	<u>SS6</u> Depth: <u>4.7m - 5.0m</u>		
Soil description:		Low Compre	ssibility Inorganic	ilt (ML) Date sampled: 21-Jul-16		
Apparatus:	Hand	Crank	Balance no.:	1 Porcelain bowl no.: 9		
Liquid limit device no.:	2	2	Oven no.:	1 Spatula no.: 2		
Sieve no.:	4	0	Glass plate no.:	2		
	Liquid Limit ((LL):	1	Soil Preparation:		
	Test No. 1	Test No. 2	Test No. 3	✓ Cohesive <425 µm ✓ Dry preparation		
Number of blows	27	21	15	Cohesive >425 µm Wet preparation		
	Water Conte	ent:	I	Non-cohesive		
Tare no.	AT33	AT11	AT44	Results		
Wet soil+tare, g	26.18	27.05	27.40	15.5		
Dry soil+tare, g	24.93	25.60	25.85	15.0		
Mass of water, g	1.25	1.45	1.55	⁸ ^{14.5}		
Tare, g	14.86	14.89	14.87	14.0		
Mass of soil, g	10.07	10.71	10.98	⁹ 13.5		
Water content %	12.4%	13.5%	14.1%	[™] 13.0		
Plastic Limit (PL) - Water Content:			12.5			
Tare no.	AT15	AT45		12.0		
Wet soil+tare, g	22.73	21.40				
Dry soil+tare, g	22.05	20.83		13 15 17 19 21 23 25 27 29 Nb Blows		
Mass of water, g	0.68	0.57		Soil Plasticity Chart		
Tare, g	15.02	14.94		70 LL 50		
Mass of soil, g	7.03	5.89		60 High plasticity Inorganic clay		
Water content %	9.7%	9.7%			4	
Average water content %	9.7	7%		™ ¥ ¥	_	
Natural Wate	er Content (W ⁿ):			_	
Tare no.	S2			Low compressibility		
Wet soil+tare, g	46.7			- High compressibility inorganic silt - Inorganic clay		
Dry soil+tare, g	40.9			10 		
Mass of water, g	5.80			0 10 20 30 40 50 60 70 80 90	100	
Tare, g	1.30			Liquid Limit LL		
Mass of soil, g	39.60			Liquid Limit Plastic Limit (LL) (PL) Plasticity Index (PI) Natural Water Co	ntent W ⁿ	
Water content %	14.6%			13 10 3 15		
Remarks:						
Performed by:		Diddh	i Panchal	Date: 0/16/2016		
•		TNUUT		0/10/2010		
Verified by:		Raj Ka	dia, C.E.T.	Date: 8/17/2016		

Client:		Ontario Infr	astructure & Lar	ds Corporation Lab no.: G1305
Project/Site:		Prelimina 700 G	ary Geotechnical Sordon Street, W	Investigation Project no.: 076896
Borehole no.:	BH11-16		Sample no.:	<u>SS5</u> Depth: <u>3.2m - 3.5m</u>
Soil description:	Lo	w Compressibi	lity Inorganic Clay	Silt (CL-ML) Date sampled: 8-Aug-16
Apparatus:	Hand	Crank	Balance no.:	1 Porcelain bowl no.: 9
Liquid limit device no.:		2	Oven no.:	1 Spatula no.: 2
Sieve no.:	4			2
	Liquid Limit ((LL):	1	Soil Preparation:
	Test No. 1	Test No. 2	Test No. 3	✓ Cohesive <425 µm ✓ Dry preparation
Number of blows	31	27	23	Cohesive >425 µm Wet preparation
	Water Conte	ent:	[Non-cohesive
Tare no.	AT20	AT43	AT28	Results
Wet soil+tare, g	28.94	28.13	30.57	
Dry soil+tare, g	27.09	26.38	28.44	
Mass of water, g	1.85	1.75	2.13	8 155
Tare, g	14.65	14.91	14.94	
Mass of soil, g	12.44	11.47	13.50	ter o
Water content %	14.9%	15.3%	15.8%	15.0
Plastic Limit (PL) - Water Content:				
Tare no.	AT13	AT45		
Wet soil+tare, g	21.91	22.51		14.5
Dry soil+tare, g	21.29	21.83		22 24 26 28 30 32 Nb Blows
Mass of water, g	0.62	0.68		Soil Plasticity Chart
Tare, g	14.94	14.94		
Mass of soil, g	6.35	6.89		60 High plasticity Inorganic clay
Water content %	9.8%	9.9%		
Average water content %	9.8	3%		
Natural Wate	r Content (W ⁿ):		
Tare no.	C31			Low compressibility
Wet soil+tare, g				- High compressibility inorganic silt - Inorganic clav
Dry soil+tare, g				10
Mass of water, g	0.00			0 10 20 30 40 50 60 70 80 90 100
Tare, g				Liquid Limit LL
Mass of soil, g	0.00			Liquid Limit Plastic Limit (LL) (PL) Plasticity Index (PI) Natural Water Content W
Water content %	#DIV/0!			16 10 6 #DIV/0!
Remarks:				
Performed by:		미:여러도	i Danahal	Date: 8/12/2016
		Riadh	ranchai	8/12/2016
Verified by:		Raj Ka	dia, C.E.T.	Date:

Client:		Ontario Infr	astructure & Lar	ds Corporation Lab no.: G1286
Project/Site:		Prelimina 700 G	ary Geotechnical Sordon Street, W	Investigation Project no.: 076896
Borehole no.:	BH12D-1	6	Sample no.:	SS5 Depth: 12.3m - 12.6m
Soil description:		Low Plasti	city Inorganic Clay	(CL) Date sampled: 26-Jul-16
Apparatus:	Hand	Crank	Balance no.:	1 Porcelain bowl no.: 1
Liquid limit device no.:		2	Oven no.:	1 Spatula no.: 2
Sieve no.:	4	10	Glass plate no.:	2
	Liquid Limit	(LL):	1	Soil Preparation:
	Test No. 1	Test No. 2	Test No. 3	✓ Cohesive <425 µm ✓ Dry preparation
Number of blows	30	24	17	Cohesive >425 µm Wet preparation
	Water Conte	ent:	1	Non-cohesive
Tare no.	AT20	AT3	AT41	Results
Wet soil+tare, g	25.62	23.22	21.59	20.5
Dry soil+tare, g	23.90	21.91	20.50	20.0
Mass of water, g	1.72	1.31	1.09	(%) 19.5
Tare, g	14.66	14.97	14.88	Dute under the second sec
Mass of soil, g	9.24	6.94	5.62	
Water content %	18.6%	18.9%	19.4%	8.5
Plastic Limit (Pl	L) - Water Con	tent:		
Tare no.	AT28	AT43		
Wet soil+tare, g	20.65	21.58		
Dry soil+tare, g	20.09	20.92		15 17 19 21 23 25 27 29 31 Nb Blows
Mass of water, g	0.56	0.66		Soil Plasticity Chart
Tare, g	14.92	14.95		
Mass of soil, g	5.17	5.97		60 Low plasticity High plasticity Inorganic clay
Water content %	10.8%	11.1%		а, 50 (сн)
Average water content %	10	.9%		
Natural Wate	r Content (W ⁿ):		
Tare no.	B10			Low compressibility
Wet soil+tare, g	40.2			- High compressibility inorganic silt Inorganic clay
Dry soil+tare, g	35.5			10 CL MU MU MU Medium compressibility morganic silt
Mass of water, g	4.70			0 10 20 30 40 50 60 70 80 90 100
Tare, g	1.30			Liquid Limit LL
Mass of soil, g	34.20			Liquid Limit Plastic Limit (LL) (PL) Plasticity Index (PI) Natural Water Content W
Water content %	13.7%			19 11 8 14
Remarks:				
Performed by:		Riddh	i Panchal	Date: 8/16/2016
Verified by:		Raj Ka	dia, C.E.T.	Date: 8/17/2016

Client:		Ontario Infr	astructure & Lar	nds Corporation		Lab no.: G1286			
Project/Site:		Prelimina 700 G	ary Geotechnical Gordon Street, W	Investigation hitby, ON		Project no.:	076896		
Borehole no.:	BH13-16	3	Sample no .:	S	S6	Depth:	4.6m - 4.8m		
Soil description:	Lo	ow Compressibi	lity Inorganic Clay	/Silt (CL-ML)		Date sampled:	20-Jul-16		
Apparatus:	Hand	Crank	Balance no.:		1	Porcelain bowl no .:	2		
Liquid limit device no.:		2 Oven no.: 1				Spatula no.:	2		
Sieve no.:	2	10	Glass plate no.:	2	2				
r	Liquid Limit	(LL):	r	Soil Preparation	n:				
	Test No. 1	Test No. 2	Test No. 3	√ C	ohesive <425 μn	n 🗸	Dry preparation		
Number of blows	28	24	21	C	ohesive >425 μn	n 🗆	Wet preparation		
	Water Conte	ent:	1		lon-cohesive				
Tare no.	AT9	AT29	AT42			Results			
Wet soil+tare, g	23.81	23.85	24.83	17.0 -					
Dry soil+tare, g	22.64	22.62	23.43	-					
Mass of water, g	1.17	1.23	1.40	8 16.5 -	$\overline{}$				
Tare, g	15.05	14.93	14.98	ontent					
Mass of soil, g	7.59	7.69	8.45	ଁ 16.0 - ଅଧି					
Water content %	15.4%	16.0%	16.6%	Ka					
Plastic Limit (P	L) - Water Con	tent:		15.5 -					
Tare no.	AT21	AT38		-					
Wet soil+tare, g	20.34	19.93		15.0					
Dry soil+tare, g	19.86	19.48		20	J 22	Nb Blows	26 28		
Mass of water, g	0.48	0.45		70	Soil	Plasticity Chart			
Tare, g	15.06	14.92		/0		LL 50			
Mass of soil, g	4.80	4.56		60 L	ow plasticity	High plastic Inorgani¢ c	ay		
Water content %	10.0%	9.9%		4 1 50		CI			
Average water content %	9.5	9%		لم بي 40					
Natural Wate	r Content (W ⁿ):		tip 30	CL				
Tare no.	C25				ow compressibilty		(MH) and (CH)		
Wet soil+tare, g	59.1			20	/	- High inon - Inor	compressibility ganic silt anic clay		
Dry soil+tare, g	55.8			10		- Medium co inorganic si	mpressibility It		
Mass of water, g	3.30			0 0	10 20 3	0 40 50 60	70 80 90 100		
Tare, g	1.30					Liquid Limit LL			
Mass of soil, g	54.50			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ		
Water content %	6.1%			16	10	6	6		
Remarks:				-					
Performed by:			i Donoho!		Date:		9/12/2016		
		Riddh	ranchai				0/12/2010		
Verified by:		Raj Ka	dia, C.E.T.		Date:		8/17/2016		

DENSITY OF SOIL

				(AS	TM # D 2937- 83
CLIENT:	On	tario Infrastructure & Lands Co	rporation	LAB No.:	G1294
PROJECT/SITE:	Preliminary Geotec	hnical Investigation, 700 Gordo	on Street, Whitby, Ontario	PROJECT No.:	076896
Source:	Sar	npled Borehole	Date Sampled:	11-Aug-16	-
Material:	Diff	erent soil types	Date Received:		-
Sample Location:		BH06-16	_		
			LAB No.: G129 ordon Street, Whitby, Ontario PROJECT No.: 07689 Date Sampled: 11-Aug-16 Date Received:		
SAMPLE	Moisture content	Bulk Density(wet)	Unit Weight (wet)	Bulk Density(dry)	Unit Weight (dry)
No.	%	(kg/m³)	(kN/m³)	(kg/m³)	(kN/m³)
BH06-16 / SS2	10.1	2367.0	23.2	2149.5	21.1
BH06-16 / SS3	7.8	2276.6	22.3	2111.6	20.7
BH06-16 / SS6	7.1	2664.4	26.1	2488.2	24.4
BH06-16 / SS8	7.2	2207.1	21.7	2059.3	20.2
BH06-16 / SS9	9.9	2340.7	23.0	2129.4	20.9
BH06-16 / SS10	12.8	2444.1	24.0	2167.0	21.3
REMARKS:					
PERFORMED BY:	Anwar Rehani		DATE	: 16-Aug-16	
VERIFIED BY:	Rai Kadia. C.E.T.		 DATE	. 17-Aug-16	

Appendix C Soil Corrosivity Test Results

CLIENT NAME: GHD LIMITED 651 COLBY DRIVE WATERLOO, ON N2V1C2 (519) 884-0510

ATTENTION TO: Jennifer Balkwill

PROJECT: 076896 (PO# 73504349-1)

AGAT WORK ORDER: 16T123663

SOIL ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

DATE REPORTED: Aug 12, 2016

PAGES (INCLUDING COVER): 10

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.scala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 10

Results relate only to the items tested and to all the items tested

Certificate of Analysis

CLIENT NAME: GHD LIMITED

PROJECT: 076896 (PO# 73504349-1)

SAMPLING SITE:

AGAT WORK ORDER: 16T123663 ATTENTION TO: Jennifer Balkwill SAMPLED BY:

		Corrosiv	vity Packag	е							
SAMPLE TYPE: Soil	SAMPLE	ID: 7755817		DATE	RECEIVED: Aug (5, 2016					
DATE SAMPLED: Aug 05, 2016		DATE REPORTED: Aug 12, 2016									
SAMPLE DESCRIPTION: MW1-16	SS3 (5'-7')										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
Sulphide	%	<0.05	-	0.05	Aug 11, 2016	BW	Aug 11, 2016				
Chloride (2:1)	µg/g	4		2	Aug 11, 2016	JC	Aug 11, 2016				
Sulphate (2:1)	µg/g	5		2	Aug 11, 2016	JC	Aug 11, 2016				
pH (2:1)	pH Units	8.39		NA	Aug 11, 2016	MM	Aug 11, 2016				
Electrical Conductivity (2:1)	mS/cm	0.086		0.005	Aug 11, 2016	AR	Aug 11, 2016				
Resistivity (2:1)	ohm.cm	11600		1	Aug 11, 2016	SYS	Aug 11, 2016				
Redox Potential (2:1)	mV	283		5		AR					
COMMENTS											

COMMENTS.

RDL - Reported Detection Limit; G / S - Guideline / Standard

EC/Resistivity, pH, Chloride, Sulphate and Redox Potential were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil).

Certified By:

Male Muneman

Page 2 of 10

AGAT CERTIFICATE OF ANALYSIS (V1)

Certificate of Analysis

CLIENT NAME: GHD LIMITED

PROJECT: 076896 (PO# 73504349-1)

SAMPLING SITE:

AGAT WORK ORDER: 16T123663 ATTENTION TO: Jennifer Balkwill SAMPLED BY:

		Corrosiv	vity Packag	е						
SAMPLE TYPE: Soil	SAMPLE	ID: 7755822		DATE	RECEIVED: Aug (5, 2016				
DATE SAMPLED: Aug 05, 2016	DATE REPORTED: Aug 12, 2016									
SAMPLE DESCRIPTION: MW2-16 S	S3 (5'-7')									
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
Sulphide	%	<0.05		0.05	Aug 11, 2016	BW	Aug 11, 2016			
Chloride (2:1)	µg/g	4		2	Aug 11, 2016	JC	Aug 11, 2016			
Sulphate (2:1)	µg/g	8		2	Aug 11, 2016	JC	Aug 11, 2016			
pH (2:1)	pH Units	8.68		NA	Aug 11, 2016	MM	Aug 11, 2016			
Electrical Conductivity (2:1)	mS/cm	0.082		0.005	Aug 11, 2016	AR	Aug 11, 2016			
Resistivity (2:1)	ohm.cm	12200		1	Aug 11, 2016	SYS	Aug 11, 2016			
Redox Potential (2:1)	mV	327		5		AR				
COMMENTS										

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

EC/Resistivity, pH, Chloride, Sulphate and Redox Potential were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil).

Certified By:

Male Muneman

Page 3 of 10

AGAT CERTIFICATE OF ANALYSIS (V1)

Certificate of Analysis

CLIENT NAME: GHD LIMITED

PROJECT: 076896 (PO# 73504349-1)

SAMPLING SITE:

AGAT WORK ORDER: 16T123663 ATTENTION TO: Jennifer Balkwill SAMPLED BY:

		Corrosiv	vity Packag	е							
SAMPLE TYPE: Soil	SAMPLE	ID: 7755823		DATE	RECEIVED: Aug (5, 2016					
DATE SAMPLED: Aug 05, 2016		DATE REPORTED: Aug 12, 2016									
SAMPLE DESCRIPTION: BH6-16 S	S5 (10'-12')										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
Sulphide	%	0.50		0.05	Aug 11, 2016	BW	Aug 11, 2016				
Chloride (2:1)	µg/g	18		2	Aug 11, 2016	JC	Aug 11, 2016				
Sulphate (2:1)	µg/g	210		2	Aug 11, 2016	JC	Aug 11, 2016				
pH (2:1)	pH Units	8.25		NA	Aug 11, 2016	MM	Aug 11, 2016				
Electrical Conductivity (2:1)	mS/cm	0.316		0.005	Aug 11, 2016	AR	Aug 11, 2016				
Resistivity (2:1)	ohm.cm	3160		1	Aug 11, 2016	SYS	Aug 11, 2016				
Redox Potential (2:1)	mV	249		5		AR					
COMMENTS											

COMMENTS.

RDL - Reported Detection Limit; G / S - Guideline / Standard

EC/Resistivity, pH, Chloride, Sulphate and Redox Potential were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil).

Certified By:

Male Muneman

Page 4 of 10

AGAT CERTIFICATE OF ANALYSIS (V1)

Certificate of Analysis

CLIENT NAME: GHD LIMITED

PROJECT: 076896 (PO# 73504349-1)

SAMPLING SITE:

AGAT WORK ORDER: 16T123663 ATTENTION TO: Jennifer Balkwill SAMPLED BY:

		Corrosiv	vity Packag	е							
SAMPLE TYPE: Soil	SAMPLE	ID: 7755824		DATE	RECEIVED: Aug (5, 2016					
DATE SAMPLED: Aug 05, 2016		DATE REPORTED: Aug 12, 2016									
SAMPLE DESCRIPTION: BH7-16 S	S3 (5'-7')										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
Sulphide	%	<0.05		0.05	Aug 11, 2016	BW	Aug 11, 2016				
Chloride (2:1)	µg/g	8		2	Aug 11, 2016	JC	Aug 11, 2016				
Sulphate (2:1)	µg/g	24		2	Aug 11, 2016	JC	Aug 11, 2016				
pH (2:1)	pH Units	8.96		NA	Aug 11, 2016	MM	Aug 11, 2016				
Electrical Conductivity (2:1)	mS/cm	0.151		0.005	Aug 11, 2016	AR	Aug 11, 2016				
Resistivity (2:1)	ohm.cm	6620		1	Aug 11, 2016	SYS	Aug 11, 2016				
Redox Potential (2:1)	mV	267		5		AR					
COMMENTS											

RDL - Reported Detection Limit; G / S - Guideline / Standard

EC/Resistivity, pH, Chloride, Sulphate and Redox Potential were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil).

Certified By:

Male Muneman

Page 5 of 10

AGAT CERTIFICATE OF ANALYSIS (V1)

Certificate of Analysis

CLIENT NAME: GHD LIMITED

PROJECT: 076896 (PO# 73504349-1)

SAMPLING SITE:

AGAT WORK ORDER: 16T123663 ATTENTION TO: Jennifer Balkwill SAMPLED BY:

		Corrosiv	vity Packag	е							
SAMPLE TYPE: Soil	SAMPLE	ID: 7755825		DATE	RECEIVED: Aug (5, 2016					
DATE SAMPLED: Aug 05, 2016		DATE REPORTED: Aug 12, 2016									
SAMPLE DESCRIPTION: MW12B-1	6 SS3 (5'-7')										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
Sulphide	%	<0.05		0.05	Aug 11, 2016	BW	Aug 11, 2016				
Chloride (2:1)	µg/g	3		2	Aug 11, 2016	JC	Aug 11, 2016				
Sulphate (2:1)	µg/g	7		2	Aug 11, 2016	JC	Aug 11, 2016				
pH (2:1)	pH Units	8.55		NA	Aug 11, 2016	MM	Aug 11, 2016				
Electrical Conductivity (2:1)	mS/cm	0.098		0.005	Aug 11, 2016	AR	Aug 11, 2016				
Resistivity (2:1)	ohm.cm	10200		1	Aug 11, 2016	SYS	Aug 11, 2016				
Redox Potential (2:1)	mV	263		5		AR					
COMMENTS:											

COMMENTS.

RDL - Reported Detection Limit; G / S - Guideline / Standard

EC/Resistivity, pH, Chloride, Sulphate and Redox Potential were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil).

Certified By:

Male Muneman

Page 6 of 10

AGAT CERTIFICATE OF ANALYSIS (V1)

Certificate of Analysis

CLIENT NAME: GHD LIMITED

PROJECT: 076896 (PO# 73504349-1)

SAMPLING SITE:

AGAT WORK ORDER: 16T123663 ATTENTION TO: Jennifer Balkwill SAMPLED BY:

		Corrosiv	vity Packag	е							
SAMPLE TYPE: Soil	SAMPLE	ID: 7755826		DATE	RECEIVED: Aug (5, 2016					
DATE SAMPLED: Aug 05, 2016		DATE REPORTED: Aug 12, 2016									
SAMPLE DESCRIPTION: BH13-16 S	SS3 (5'-7')										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
Sulphide	%	<0.05		0.05	Aug 11, 2016	BW	Aug 11, 2016				
Chloride (2:1)	µg/g	5		2	Aug 11, 2016	JC	Aug 11, 2016				
Sulphate (2:1)	µg/g	28		2	Aug 11, 2016	JC	Aug 11, 2016				
pH (2:1)	pH Units	8.28		NA	Aug 11, 2016	MM	Aug 11, 2016				
Electrical Conductivity (2:1)	mS/cm	0.198		0.005	Aug 11, 2016	AR	Aug 11, 2016				
Resistivity (2:1)	ohm.cm	5050		1	Aug 11, 2016	SYS	Aug 11, 2016				
Redox Potential (2:1)	mV	265		5		AR					
COMMENTS											

COMMENTS.

RDL - Reported Detection Limit; G / S - Guideline / Standard

EC/Resistivity, pH, Chloride, Sulphate and Redox Potential were determined on the extract obtained from the 2:1 leaching procedure (2 parts DI water: 1 part soil).

Certified By:

Male Muneman

Page 7 of 10

AGAT CERTIFICATE OF ANALYSIS (V1)

Quality Assurance

CLIENT NAME: GHD LIMITED

PROJECT: 076896 (PO# 73504349-1)

SAMPLING SITE:

AGAT WORK ORDER: 16T123663

ATTENTION TO: Jennifer Balkwill

SAMPLED BY:

Soil Analysis

						-									
RPT Date: Aug 12, 2016		DUPLICATE			REFERENCE MATERIAL		METHOD BLANK SPIKE		MATRIX SPIKE		KE				
PARAMETER	Batch	Batch Sample Id I	Dup #1 Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
							value	Lower	Upper		Lower	Upper		Lower	Upper
Corrosivity Package															
Sulphide	7755817	7755817	< 0.05	< 0.05	NA	< 0.05	100%	80%	120%	NA			NA		
Chloride (2:1)	7755817	7755817	4	4	NA	< 2	101%	80%	120%	110%	80%	120%	107%	70%	130%
Sulphate (2:1)	7755817	7755817	5	5	NA	< 2	105%	80%	120%	108%	80%	120%	109%	70%	130%
pH (2:1)	7755817	7755817	8.39	8.48	1.1%	NA	101%	90%	110%	NA			NA		
Electrical Conductivity (2:1)	7755817	7755817	0.086	0.086	0.0%	< 0.005	99%	90%	110%	NA			NA		
Redox Potential (2:1)	7755817	7755817	283	283	0.0%	< 5	103%	70%	130%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Male Muneman

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 8 of 10

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GHD LIMITED

PROJECT: 076896 (PO# 73504349-1)

AGAT WORK ORDER: 16T123663

ATTENTION TO: Jennifer Balkwill

SAMPLING SITE:	SAMPLED BY:		
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	L	L	
Sulphide	MIN-200-12025	ASTM E1915-09	GRAVIMETRIC
Chloride (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH
Sulphate (2:1)	INOR-93-6004	McKeague 4.12 & SM 4110 B	ION CHROMATOGRAPH
pH (2:1)	INOR 93-6031	MSA part 3 & SM 4500-H+ B	PH METER
Electrical Conductivity (2:1)	INOR-93-6036	McKeague 4.12, SM 2510 B	EC METER
Resistivity (2:1)	INOR-93-6036	McKeague 4.12, SM 2510 B,SSA #5 Part 3	CALCULATION
Redox Potential (2:1)		McKeague 4.12 & SM 2510 B	REDOX POTENTIAL ELECTRODE

Page 10 of 10

www.ghd.com

